
ARI Research Note 97-39

Designing an Interactive Multimedia
Environment for Learning and Aiding

Troubleshooting

Janet Kolodner and Mimi Recker
Georgia Institute of Technology

Research and Advanced Concepts Office
Michael Drillings, Chief

19980224 083

September 1997

OTIC QUALITY INSPECTED fe

United States Army
Research Institute for the Behavioral and Social Sciences

Approved for public release; distribution is unlimited.

U.S. ARMY RESEARCH INSTITUTE
FOR THE BEHAVIORAL AND SOCIAL SCIENCES

A Field Operating Agency Under the Jurisdiction
of the Deputy Chief of Staff for Personnel

EDGAR M. JOHNSON
Director

Research accomplished under contract
for the Department of the Army

Georgia Institute of Technology

Technical review by

Michael Drillings

NOTICES

DISTRIBUTION: This report has been cleared for release to the Defense Technical Information
Center (DTIC) to comply with regulatory requirements. It has been given no primary distribution
other than to DTIC and will be available only through DTIC or the National Technical Information
Service (NTIS).

FINAL DISPOSITION: This report may be destroyed when it is no longer needed. Please do not
return it to the U.S. Army Research Institute for the Behavioral and Social Sciences.

NOTE: The views, opinions, and findings in this report are those of the author(s) and should not
be construed as an official Department of the Army position, policy, or decision, unless so
designated by other authorized documents.

REPORT DOCUMENTATION PAGE

1. REPORT DATE
1997, September

2. REPORT TYPE
Final

3. DATES COVERED (from... to)
June 1990-September 1994

4. TITLE AND SUBTITLE
Designing an Interactive Multimedia Environment for Learning and

Aiding Troubleshooting

5a. CONTRACT OR GRANT NUMBER

MDA903-90-K-0112

5b. PROGRAM ELEMENT NUMBER
0601102A

6. AUTHOR(S)

Janet Kolodner and Mimi Recker (Georgia Institute of Technology)

5c. PROJECT NUMBER

B74F
5d. TASK NUMBER

2901
5e. WORK UNIT NUMBER

C06
7. PERFORMING ORGANIZATION NAME(S) AND ADDRESS(ES)
Georgia Institute of Technology
College of Computing
Atlanta, GA 30332-0280

8. PERFORMING ORGANIZATION REPORT NUMBER

9. SPONSORING/MONITORING AGENCY NAME(S) AND ADDRESS(ES)
U.S. Army Research Institute for the Behavioral and Social Sciences
ATTN: PERI-BR
5001 Eisenhower Avenue
Alexandria, VA 22333-5600

10. MONITOR ACRONYM

ARI

11. MONITOR REPORT NUMBER

Research Note 97-39
12. DISTRIBUTION/AVAILABILITY STATEMENT

Approved for public release; distribution is unlimited.

13. SUPPLEMENTARY NOTES

COR: Michael Drillings

14. ABSTRACT (Maximum 200 words):

The need for effective troubleshooting is rapidly becoming ubiquitous in our increasingly technological society. However,
troubleshooting is a complex process both to learn and perform. This report examines the prospects for designing an
interactive learning environment that helps users acquire and engage in effective troubleshooting. This work is informed by
two important strands of related research. First, we draw upon research focused on the design and development of interactive
learning environments. We are interested both in work focusing on theory-driven design on multimedia, and work focusing on
how students learn in apprenticeship learning situations. The research summarized forms the basis for a prototype design of an
interactive multimedia environment. The prototype is designed for the task domain of help-desk troubleshooting of computer
systems problems for a large computer company.

15. SUBJECT TERMS

Troubleshooting Vyasa Problem solving

SECURITY CLASSIFICATION OF

16. REPORT
Unclassified

17. ABSTRACT
Unclassified

18. THIS PAGE
Unclassified

19. LIMITATION OF
ABSTRACT

Unlimited

20. NUMBER
OF PAGES

62

21. RESPONSIBLE PERSON
(Name and Telephone Number)

DESIGNING AN INTERACTIVE MULTIMEDIA ENVIRONMENT FOR LEARNING AND
AIDING TROUBLESHOOTING

CONTENTS

Page
PART I.

1 INTRODUCTION 1

2 TROUBLESHOOTING PROBLEM SOLVING 2
A Theoretical Framework for Diagnosis 3
TS: A Computational Model 4
Summary 8
Empirical Studies of Troubleshooting 8

3 LEARNING TO TROUBLESHOOT 18

4 THEORY-BASED DESIGN OF INTERACTIVE MULTIMEDIA 22

5 IMPLICATIONS FOR DESIGN 25
Learning to Troubleshoot 26
Structuring Troubleshooting s 26
Designing for Fidelity 27
Intelligent Support and Aid 28
Communication , 29

6 DESIGNING FOR A EHLP-DESK DOMAIN 29

7 CONCLUSION.... 35

ACKNOWLEDGMENTS 36

REFERENCES 37

LIST OF TABLES

Table 1. Percentage and mean number of mouse actions per category 12

2. ANOVA results 13

3. Proportion of faults diagnosed, time, and mean number of mouse actions per condition 15

4. Partial taxonomy of physical media and cognitive media types 24

Preceding Page Blank
iii

CONTENTS (Continued)

Page

LIST OF FIGURES

Figure 1. Initial screen of the help-desk troubleshooting system (HD-T S) 41

2. Generic, start-up screen after selecting any of the modes 42

3. Troubleshooting step highlighted 43

4. Screen with several hypothese proposed and "Select Hypotheses" window
button shown 44

5. Screen showning hypothesis testing phase 45

6. Verification/evaluation phase screen 46

7. Screen after a second iteration through hypotheseis selections and testing 47

PART II.

OVERVIEW 49

MENTAL MODELS OF PHYSICAL SYSTEMS 49
The Role of Mental Models in Constraining Search during Troubleshooting 49
The Nature of Human Explanations that Underlie Mental Models 51
The Role of Explanations in Learning Mental Models 52

FRAMES IN MENTAL MODELS 54
The Nature of Frames 55
Empirical Evidence for Frames 55
A Computational Model of Frames 56

REFERENCES 57

IV

DESIGNING AN INTERACTIVE MULTIMEDIA ENVIRONMENT
FOR LEARNING AND AIDING TROUBLESHOOTING

1 Introduction

The need for effective troubleshooting is rapidly becoming ubiquitous in our increasingly
technological society. People with a variety of educational backgrounds, involved in many
different kinds of jobs, are using a growing number of technologically sophisticated tools.
These tools frequently require troubleshooting.

However, effective and efficient troubleshooting of devices and systems is a complex pro-
cess to perform. And, for several reasons, it is equally difficult to learn. First, troubleshooting
requires detailed knowledge of the device or system in question, making it hard to separate
domain knowledge from troubleshooting knowledge and strategies. Second, troubleshooting
may occur in many different situational contexts, under different resource bounds, each re-
quiring different reasoning strategies (Towne and Munro, 1988; Towne, 1993; Munro, 1993).
For example, a diagnosis situation may require that the failed device be repaired imme-
diately, or a longer turn-around time may be permitted; and, replacement parts may be
plentiful and cheap, or they may be scarce and expensive; and, certain diagnostic tests may
be difficult or time-consuming to perform.

Our research examines the prospects for designing interactive systems that help users
learn effective troubleshooting skills and strategies. Furthermore, as the user gains expertise,
we examine how the role of the interactive environment may change to become more of a
personal assistant that aids and structures the troubleshooting process. This research thus
provides an interesting case study of how cognitive science research can be used to inform
the design of tools intended for authentic and complex work domains.

This research is informed by two important strands of related work. First, we draw upon
work aimed at understanding people as they engage in complex troubleshooting tasks and,
in addition, as they learn how to troubleshoot. In this arena, we draw upon results from
both empirical and analytical studies (for example, AI and cognitive science models). We
began by observing car mechanics as they diagnosed malfunctioning engines and, based upon
that, developed a model of an ideal learner of troubleshooting skills (Redmond, 1992). This
model tells us much about the kinds of situations that enable succsessful learning in active
apprenticeship learning situations.

However, we still lacked a complete model of the troubleshooting problem solving. To
this end, we performed studies of students diagnosing faults using a computer-based, dy-
namical simulation of an oil-fired marine steam power plant, called Turbinia, coupled with
an intelligent tutoring system, called Vyasa (Vasandani and Govindaraj, 1993; Vasandani
and Govindaraj, 1994). The domain of study is diagnosis of large systems, a complex ac-
tivity that requires detailed knowledge of the device or system in question, along with a
repertoire of troubleshooting strategies (Lancaster and Kolodner, 1988; Redmond, 1992).
The Turbinia simulation environment provides a tractable means for analyzing the range of
student diagnostic strategies. Our analysis of student troubleshooting activities is performed
in the context of a theoretical framework for analyzing diagnostic tasks. In this framework,

diagnosis is characterized as a process of generating hypotheses for explaining the observed
faults, and testing these hypotheses by conducting experiments. Such reasoning has been
described as dual problem space search, where processing alternates between search in the
hypothesis problem space and search in the experiment problem space (Klahr and Dunbar
1988).

The second important strand of research draws upon the design and development of
interactive multimedia learning and aiding environments. We are interested in both work
focusing on theory-driven design of multimedia, and work focusing on how students learn
in apprenticeship learning situations (Collins et al., 1989; Lajoie and Lesgold, 1989). We
review literature that highlights the important processes that comprise active learning. In
addition, we present a theory for the design of interactive systems, based upon cognitive
considerations of users and tasks.

This paper presents the empirical and analytical studies underlying the design of an
interactive system for troubleshooting. Specifically, results from studies of troubleshooting
provide the theoretical underpinnings for knowledge communication. Similarly, prior research
on the design of interactive multimedia learning environments provide a theoretical basis for
design. In tandem, these provide the motivation for the design of an interactive multimedia
learning environment to help and aid people as they troubleshoot complex systems. The
target domain for our system is customer help-desk employees. These employees, called
help-desk specialists, work for a large computer company and receive telephone calls from
customers experiencing problems with their computer systems. Through conversing with
the customer, asking questions, and drawing upon information resources, they diagnose the
problem and offer solutions.

This real-world work domain provides an ideal test-bed for our design. It is prototypi-
cal of troubleshooting tasks. Help-desk operators engage in complex troubleshooting, under
difficult and time-constrained conditions. Customers typically want immediate solutions to
their problems, yet they are not always able to correctly identify and articulate problems
and symptoms. In addition, help-desk operators are limited in the kinds of diagnostic tests
that they can perform, since they are primarily limited to conversations and question-asking.
Finally, they have at their disposal a wide array of information resources. They perform diag-
nosis in an information-rich environment, drawing upon resources such as on-line databases,
libraries of solved cases, manuals, and other specialists. They must make rapid decisions as
to which resources will provide the best information in the shortest amount of time.

2 Troubleshooting Problem Solving

We begin by presenting the theoretical framework we have developed to characterize trou-
bleshooting tasks. This section describes this theoretical framework for troubleshooting tasks
and describe a computational model, which implements the framework.

A Theoretical Framework for Diagnosis

We define diagnosis as identifying the component that is causing the faulty condition. We
propose that this process involves identifying and clarifying the initial symptoms, generat-
ing hypotheses to explain the symptoms, running diagnostic tests to confirm or disconfirm
hypotheses, and evaluating test results. Within cognitive science, the alternation between
hypothesis generation and testing has been characterized as dual problem space search (Klahr
and Dunbar, 1988). In such models, search alternates between (1) the hypothesis space, which
contains all possible hypotheses for the task, and (2) the experiment space, which contains all
possible experiments for the task. This framework has been proposed as a model applicable
to any problem solving situation in which hypotheses are proposed and data are collected
(Klahr and Dunbar, 1988)1.

Search in the hypothesis space entails proposing components whose failure best explains
the observed symptoms. The search is guided by both prior knowledge and results from ex-
periments. Search in the experiment space entails conducting diagnostic tests whose results,
in turn, may confirm or disconfirm particular hypotheses under consideration. Search in
the experiment space may be guided by currently active hypotheses, or may serve to gather
information for formulating hypotheses.

Klahr and Dunbar (1988) developed this framework to characterize problem solvers' ac-
tions as they engaged in process of scientific discovery. The framework enabled them to
characterize problem solvers in terms of how they chose to search the two problem spaces.
Theorists describe problem solvers who first attempt to generate hypotheses that are then
confirmed or disconfirmed through experiments. This top-down approach begins with search
in the hypothesis space, and the search in the experiment space is constrained by the hypothe-
ses under consideration. Experimenters describe problem solvers who search the experiment
space without explicit hypotheses. In this bottom-up strategy, hypotheses are induced from
experimental results.

Thus, strategies are crucial for determining where and how the two problem spaces are
searched. For example, when searching the hypothesis space, are several hypotheses consid-
ered, or only one? When searching the experiment space, are tests conducted to 1) confirm
the leading hypothesis, 2) disconfirm hypotheses, or 3) maximize information gain? In our
empirical studies, we were interested in determining students' strategies for coordinating
search in the two problem spaces, whether students could be characterized as theorists or
experimenters, and the effects of resource bounds on students' search strategies. These stud-
ies provide a baseline that tells us how the novices we are addressing see the problem and
which strategic pieces of troubleshooting the system needs to help them learn.

xIt is also interesting to note that some theories of scientific discovery are inspired by AI-based models
of troubleshooting (Darden, 1990)

TS: A Computational Model

In order to carefully separate and analyze the effects of knowledge, strategies, and con-
trol during troubleshooting, we created TS (TroubleShoot), a computational model of the
knowledge and strategies involved in troubleshooting an automobile engine.

TS was implemented using the Soar cognitive architecture (Laird et al., 1987). Soar is
a general problem solving architecture, which includes an experience-based learning mech-
anism, called chunking. Information processing in Soar involves search in problem spaces
through the application of operators in order to achieve a particular goal, with knowledge
influencing both the structure and efficiency of the search process (Newell, 1990).

The Soar architecture has two kinds of memories. The first memory, a recognition or
content-addressable memory, stores long-term knowledge in production rules (or situation-
action pairs). The second memory is called working memory, and contains a set of objects
that represents the current problem solving situation. Changes to working memory trigger
parallel access to recognition memory, where all productions whose conditions match to
elements currently stored in working memory are fired.

General Modelling Framework

Within TS, successful troubleshooting is defined as identifying the component that is caus-
ing the faulty condition. As suggested by the theoretical framework, the process involves
identifying and clarifying the complaint, generating hypotheses to explain the symptoms,
and running tests to confirm or disconfirm hypotheses. This process may be iterated several
times until the faulty component is located.

Implementation

The above theoretical framework is implemented in the TS Soar model by dividing the
troubleshooting problem solving into multiple problem spaces. In addition, the TS model
consults an external simulation of the malfunctioning engine in order to collect the initial
complaint and results from diagnostic tests.

The problem solving begins by requesting the complaint from the external simulation.
This is also an opportunity for problem re-description. For example, a generic complaint
may be re-interpret in terms of the more specific underlying causal model.

After collecting the complaint, the system begins problem solving in one of three problem
spaces: 1) the hypothesis generation space, 2) the hypothesis testing space, and 3) the
hypothesis evaluation space. The order in which problem spaces are visited and re-visited
depends on the particular students' problem solving strategy.

The hypothesis generation problem space.
The role of this problem space is to formulate a hypothesis about which system component

is faulty. Hypotheses can be generated in many different ways. The easiest method (the least

4

computationally expensive) for the generation of hypotheses occurs via the application of
relevant symptom-fault pairs. These are acquired through experience. Hypotheses can also
be generated by specializing a previous, more general hypothesis. They can be generated
through causal reasoning, where previous hypotheses and test results are considered. Finally,
they can be generated by analogies to previous problem solving episodes.

In addition, hypothesis generation can be either serial or parallel. That is, several hy-
potheses can be considered at once, and one selected as a the leading contender, or a single
hypothesis can be generated at a time.

After the set of hypotheses has been generated, one is selected. Several heuristics are
available for doings this, e.g., choosing the easiest to test, choosing the most probable, or
choosing the most familiar.

The hypothesis testing problem space.
Two main processes occur here: Proposing a test and carrying it out. Strategies help

select the kinds of tests selected. Heuristics help to identify tests that are cheap to conduct,
yet are maximally informative. For example, visual inspections of parts are much quicker
to perform than using expensive test equipment. Tests can serve to confirm or disconfirm
active hypotheses. Once a test is chosen, a prediction of its result is made.

Next, the test is conducted and the external simulation returns the test result. The test,
the prediction, and the test value are all recorded.

The hypothesis evaluation problem space.
The role of the evaluation problem space is the evaluate the currently active hypothesis

in light of the current data (hypotheses considered, tests conducted, and tests results). The
test result is first compared to the prediction. Depending on the comparison, TS will do
one of several things: (1) it might halt with its final diagnosis, (2) it might reject the
current hypothesis and return to the hypothesis space, (3) it might propose that the current
hypothesis be refined and return to the hypothesis space, and (4) it might decide that further
tests results are inconclusive and return to the test problem space.

Protocol Simulations

In order to determine coverage of the model, we used TS to interpret the protocols of
two students and an instructor in an auto mechanics vocational education class (Lancaster
and Kolodner, 1988). These protocols, collected during the previous contract period, were
analyzed informally and formed the primary motivation for the model of learning to trou-
bleshoot (Redmond, 1992). These same protocols were revisited and modeled more formally
in a model of troubleshooting problem solving.

In the model, we were interested in determining which heuristics, knowledge, and strate-
gies led to their decisions. Input to TS was the troubleshooting behavior of participants. TS
constructs a chain of inferences that provides a plausible explanation of their behavior.

For the current model, protocols were drawn from a troubleshooting session in which

a piece of tape had been wrapped around the outgoing terminal of the fuel pump fuse.
The car's symptom was that it would turn over but would not start. This problem was
successfully solved by all participants.

We added knowledge about automobile fuel systems to TS to allow it to simulate the be-
havior of participants. In general, the primary differences between the participants were the
number of hypotheses generated, whether or not they were generated in parallel, heuristics
for choosing the best hypothesis (e.g. a bias toward the "easiest" hypothesis to test), and
types of tests selected (confirming vs. disaffirming).

First Student: Novice

The first student was considered intermediate in that he was in his second quarter at the
school. Upon beginning the problem, he suspects a fuel pump problem almost immediately.
Then, in sequence, he considers a number of subcomponents of the fuel pump and tests each
one in turn. His search is hampered by a difficulty in locating the fuel pump relay. In sum,
this protocol is characterized by a sequential generation of hypotheses, each a refinement
of the previous. Tests are also proposed sequentially, in an attempt to confirm the active
hypothesis. The only real difficulty the student encounters occurs due to lack of topographic
knowledge.

Early in his reasoning, the student uses a symptom-fault pair to go from non-starting
car to hypothesizing the fuel pump as the faulty component. Clearly this is an idiosyncratic
pair, but, due to the fault distribution probability of most cars, it has a fairly high degree
of reliability.

Second Student: Advanced

The second student was considered advanced in that he had more background that the
previous student. He locates the failure easily once he decides to check the fuses. But first,
he incorrectly applies a procedure by using a wrong piece of equipment during a test, which
slows his progress. All of his tests act to confirm the active hypothesis.

The protocol begins a parallel generation of hypotheses. The generation appears to be
driven by a symptom-fault pair:

What are the 3 things we need for a car to run? Air, fuel, and heat. The first
thing I'm gonna check and make sure we got fuel.

Note that the trigger, "car to run", is fairly vague at this point. We suspect that such
triggers, with experience, become more attuned to relevant car features. It is unclear what
prompts the ordering of these hypothesis such that one is selected over the others.

This student uses causal reasoning to make some of his decisions to interpret a test result,
and to generate or refine a hypothesis:

So, what we're gonna think about now is why that fuel pump is not running
when it's got 12 volts back there to it.

Okay, the ECM controls the injector so what we have - the fuel pump's
running - we tested it we ran straight to that bypass wire went back there and
heard it. And we know we got fuel up to the injector and what the injector does
is - the ECM - the computer puts 13 volts to the red wire to the injector and
then the other side goes to ground so when the key is on you have ignition going
to the red wire to the injector so you take the test light, hook it to the ground
and the light should come on and it's not.

This student also displays an awareness of some potential pitfalls of tests. As a backup,
he proposes more reliable (and also more "expensive") tests. Thus, in this example, tests
are ordered according to how difficult they are to conduct, with an accompanying awareness
of the reliability of their results.

So we want to do now is check the fuse to the ECM and check it. It looks
okay, but that doesn't mean it's right - 'cause in the back of it a wire could be
loose. What I need to do though is to check it with the light.

Instructor: Expert troubleshooter

The instructor (an expert) generates many hypotheses in parallel and then employs a hypothesis-
elimination strategy. He also appears to select tests on the basis of how easy they are to
conduct. Finally, he, on occasion, selects a test that acts to disconfirm a test. We also
observe frequent episodes of causal reasoning in which hypotheses are proposed or refined
(but not rejected).

In this first example, we see a refined symptom-fault pair pointing to three hypotheses.
The instructor, based on a non-starting car, immediately identifies non-combustion (a higher-
level perceptual feature) as the symptom. Notice that he does not say "the car doesn't start."
On the basis of the perceived symptom, three possible faults are hypothesized. Then, one is
selected on the basis of ease of investigation.

First thing I start thinking about is what? The three things that you have
to have for combustion - fuel, heat, and air. Ok? Now - what you gotta think
about there is what is the easiest thing to check? The fuel.

This excerpt shows an example of a test that is conducted to disconfirm a hypothesis:

Now as I power the ECM down for 10 seconds I'm gonna turn the key to
the ON position and listen...And I hear no pump run...But it should run for 2
seconds, so now I - now wait a minute - you the hear fuel pump relay energize,
you'll hear the pump run. Now, I know that the pump is not running. I know
that I don't have any fuel.

Summary

The theoretical framework we developed helps address and characterize the inherent com-
plexity present in troubleshooting tasks. In addition, the model and simulation of protocols
demonstrate the usefulness of the framework for understanding the troubleshooting process.
They serve to highlight differences between the troubleshooting processes of the students
and the instructor. First, the students typically generate hypotheses in a serial fashion and
generally only one hypothesis is considered at a time. The instructor, on several occasions,
generates hypotheses in parallel. Second, differences are observed in how selections are made.
For the instructor, the hypothesis that is deemed the easiest to investigate is typically the
one that becomes active. The students appear to select on the basis of familiarity.

Third, differences exist in how testing strategies are selected. Often the instructor se-
lects a test whose outcome will disconfirm active hypotheses. The students tend to select
tests that will confirm their hypothesis. The technique of selecting a measurement that pro-
duces maximal elimination of hypotheses is frequently used in AI models of troubleshooting
(deKleer, 1990). While it is certainly an efficient technique, it was never observed in the
students' protocols. We note that there is also probably a relationship between the method
used to generate hypotheses (i.e. in parallel) and whether a test was selected that served to
disconfirm multiple hypotheses.

Finally, and quite obviously, knowledge differences affect the process. The students pos-
sess a smaller and less refined symptom-fault set and were less able to effectively use causal
reasoning in order to focus their search, compared to the expert.

Empirical Studies of Troubleshooting

The previous section presented a theoretical framework for troubleshooting, a computa-
tional model, and a small protocol study of people troubleshooting an automobile engine.
The model and the protocol analyses were intended as initial explorations of troubleshooting
problem solving. In particular, these preliminary studies revealed the importance of genera-
tion hypotheses, and testing those hypotheses. Strategies were also suggested as important
for coordinating these processes in these two problem spaces.

In order to further examine the role of hypothesis generating and testing and how strate-
gies coordinate these processes , we conducted empirical studies of students' troubleshooting
a complex, dynamic system. In our studies, students diagnosed faults in a computer-based
simulation of an oil-fired marine steam power plant, called Turbinia, coupled with an in-
telligent tutoring system, called Vyasa (Vasandani and Govindaraj, 1993; Vasandani and
Govindaraj, 1994). The domain of study is diagnosis of large systems, a complex activity
that requires detailed knowledge of the system, along with a repertoire of troubleshooting
strategies (Lancaster and Kolodner, 1988; Redmond, 1992).

An important benefit of conducting empirical studies in the context of computer-based

Simulation systems is that they offer invaluable opportunities for studying student problem
solving activities and strategies. Specifically, the simulation context provides a more con-
strained environment for analyzing learning and performance in complex, problem solving
domains. In addition, the simulation context allows tractable means for recording the prob-
lem solving of a large number of people, thus establishing greater reliability. Results from
such studies have several important implications. Theoretically, they provide insights into
the nature of cognition and learning in the context of interactive educational technologies.
Practically, they provide guidance on the design of such systems.

In the first study reported, we analyzed students' diagnostic goals and strategies in terms
of the theoretical framework. We were interested in determining students' strategies for
conducting and coordinating search in the two problems space. In addition, we wished to
characterize these strategies with respect to students' overall diagnostic performance.

In addition, diagnosis can occur in many different situational contexts, under differing
resource bounds (Towne and Munro, 1988). For example, a diagnosis situation may require
that the failed device be repaired immediately, or a longer turn-around time may be permit-
ted. Moreover, replacement parts may be plentiful and cheap, or they may be scarce and
expensive. Finally, certain diagnostic tests may be difficult or time-consuming to perform.

Again, the Turbinia simulation environment provides means for analyzing diagnostic
strategies under different situational contexts. These analyses can be conveniently performed
using the simulation, while avoiding some of the costly and inherent difficulties present in
performing field studies. In particular, the second study we report investigates the effects of
resources bounds on students' diagnostic strategies. Two resource bounds were investigated:
time bounds and cost bounds. The effects of time constraints on diagnosis performance were
investigated by manipulating the time available for diagnosing faults. The effects of cost
were investigated by limiting the number of diagnostic tests that students were permitted
to conduct.

The results from these two studies show how simulation environments offer methodolog-
ical advantages for studies of student learning and performance. Moreover, these results
provide important feedback and implications for the design of software simulation and learn-
ing environments. For example, the results raise issues in the kinds of fidelity that are
designed in a computer simulation in order to model the corresponding external system
(Collins, in press). In one common approach, the system designer attempts to maintain an
epistemic fidelity with the external system (Wenger, 1987). In this view, the representa-
tions used in the simulation capture the structural organization of knowledge assumed to be
held by the expert. An implicit instructional assumption is that the learner internalizes the
expert's mental model through interacting with the simulation. In Turbinia, the organiza-
tion of systems, subsystems, and components were modeled on an expert's understanding
of the marine power plant (Govindaraj and Su, 1988). In another approach, the simulation
maintains a dynamic or temporal fidelity with the external system. That is, as the external
system changes through time, the corresponding simulation reflects these changes. Turbinia

also attempts to maintain dynamic fidelity, as the effects of faults propagate through the
simulation with time.

As we will argue, the results from our studies show that students develop strategies
that are tuned to particular constraints present in the simulation environment. In short,
students' strategies develop from exposure to a range of situation contexts exhibited by the
system. These results, then, suggest a third, important kind of fidelity to be considered
during design - one that we have termed fidelity of interaction. In this view, the design of
simulations of dynamical domains should attempt to preserve the costs and resource bounds
of target situations. This will enable students to develop strategies that are faithful to the
activity demands of real-world situations.

Turbinia-Vyasa

In our empirical studies, we used a computer-based simulation, called Turbinia-Vyasa. This
simulation is an instructional system that trains operators in diagnostic problem solving
in the domain of marine power plants. It is comprised of a steam power plant simulator
and an intelligent tutoring system. Turbinia-Vyasa is implemented in Macintosh Common
Lisp with Common Lisp Object System and runs on Apple Macintosh II computers. The
simulator, Turbinia, is based on a hierarchical representation of subsystems, components, and
primitives together with necessary physical and logical linkages among them. Turbinia can
simulate a large number of failures in a marine power plant. Approximately 100 components
have been modeled to achieve fairly high degrees of structural and dynamic fidelity even
though the physical fidelity of the simulator is rather low. Vyasa is the computer-based
tutor that teaches the troubleshooting task using Turbinia. The simulator, an interactive,
direct manipulation interface, and the tutor (with its expert, student, and instructional
modules) comprise the instructional system.

A student interacts with Turbinia-Vyasa by choosing a schematic icon, a component, a
gauge, or icons representing functions of the tutor. The boiler schematic, along with various
icons, is shown in Figure 1.

Study 1: Diagnostic Strategies

As discussed, the first study provides an analysis of students' diagnostic strategies in the
context of Turbinia. In particular, we analyzed students' diagnostic goals and strategies in
terms of our theoretical framework. We were interested in determining students' strategies
for conducting and coordinating search in the two problems space. In addition, we wished
to characterize these strategies with respect to students' overall diagnostic performance.

In this study, students learned to troubleshoot using one of three training methods.
The training phase was followed by a test phase, in which students diagnosed a series of
faults using the simulator only. Details and results of students' performance during the

10

Figure 1: The boiler schematic in Turbinia.

training phase are reported elsewhere.(Vasandani and Govindaraj, 1994). In the analysis
presented here, we focus on students' diagnostic strategies after the training phase and while
diagnosing faults using only the simulator. More details on the results of the study can be
found elsewhere (Recker et al., 1994).

Method
Thirty undergraduate Georgia Tech Naval ROTC cadets served as students in the study.

The study consisted of a training phase (10 sessions) and a testing phase (two sessions). All
sessions lasted approximately 1 hour. During the training phase students were randomly as-
signed to one of three training conditions : (a) training using the simulator alone (Turbinia),
(b) training with the aid of a passive tutor (passive Vyasa), and (c) training with the aid
of an active tutor (active Vyasa). The training phase spanned 10 sessions, with students
typically attending one session per consecutive day. Students were never allowed to attend
more than one session per day.

During each subsequent training sessions, students solved three faults. Overall, students
diagnosed a total of 28 faults during the training phase. The fault ordering was randomly
determined, and identical for all students.

The training sessions were followed by a test phase, consisting of two sessions, which was
identical for all students. Five faults were new, while five faults had been presented during

11

Mouse Percent Overall
Category Mean
Gauges 39 25.19
Components 28 18.26
Schematics 9 5.78
Symptoms 2 1.62
Diagnoses 6 4.00

Table 1: Percentage and mean number of mouse actions per category.

the prior training sessions.
Results
The Turbinia system kept a permanent record of each students' mouse actions. Each

mouse action served one of the following functions: 1) a request to view the initial fault
symptoms 2) a request to view a schematic, 3) a request to view a component, 4) a request
to view a gauge, and 5) a request to make a diagnosis.

The first type of mouse action was assumed to be problem formulation or elaboration.
The second and third types of mouse action were assumed to involve hypothesis formulation.
Mouse actions in the fourth category were assumed to involve hypothesis testing, while
actions in the the fifth category were considered to be hypothesis evaluation.

Mouse Actions. Overall, the mean number of mouse actions per fault condition varied
widely, and can be seen as reflecting fault difficulty. The high variability also suggested that
there was no learning effect during the test phase. For this reason, in the analyses reported
below, faults were sorted by difficulty. Fault difficulty was determined by sorting on the
mean number of mouse actions per fault presented.

Table 1 shows the overall percentage and mean number of mouse actions in each category
for all faults. Viewing gauges was the most common activity, accounting for 39% of students'
mouse actions. Viewing components accounted for 28% of students' mouse actions. Calls for
viewing a new schematic accounted for 9% of the mouse actions, while evaluating diagnoses
accounted for 6%. The most infrequent action was viewing the initial symptoms (2%).
Thus, over a third of the students' actions involved conducting experiments. These results
also suggested that, overall, students did not appear to engage in much problem formulation
or elaboration.

The large number of tests suggested that students were following a strategy of attempting
to confirm their hypothesis. The ubiquity of the positive-test strategy is a robust finding in
the scientific discovery literature. While the positive-test strategy is generally acknowledged
to be a less-efficient strategy than a negative-test strategy (Freedman, 1992), its optimality
is, in reality, a function on the distribution of positive and negative instances (Klahr and
Dunbar, 1988). For example, if the probability of confirming a hypothesis is high, then a
positive test result does not add much new information. However, in the Turbinia simulation,

12

Mouse Mean Mean Main Effect Group X Trials
Category Quick

16.76
Slow
33.42

F(l,28) p-value p-value
Gauges 6.85 .0001 .0001
Components 12.24 24.28 27.22 .0001 .02
Schematics 4.78 6.77 9.69 .005 n.s.
Symptoms 1.57 1.68 - n.s. n.s.
Diagnoses 3.57 4.42 - n.s. n.s.

Table 2: ANOVA results.

the majority of the gauges had normal levels. Therefore, students had a low probability of
encountering abnormal gauges, which would serve to confirm their current hypothesis. As
such, the use of a positive-test strategy is a quite reasonable heuristic.

Diagnostic Efficiency. Students were divided into two groups, Quick vs. Slow, which
was intended to capture students' troubleshooting efficiency. The split was based on a post-
hoc median split of the mean number of mouse actions performed when diagnosing novel
faults during the test phase. In performing this split, we were interested in characterizing
differences between efficient (Quick) and less-efficient (Slow) troubleshooters.

Analyses of variance were conducted with the number of mouse actions in each category
per fault (sorted by difficulty) as the repeated measure, and group as the between-students
factor. There was a strong main effect of trials (all p's < .0001) in all mouse action categories.
This result again reflected fault difficulty. On harder faults, students were simply making
many more mouse actions in all categories.

In terms of the number of gauges viewed by students in the two groups (Quick or Slow),
there was a strong main effect of group and an interaction of group with trials (see Table
2). Moreover, there was a significant linear trend showing increased viewing of gauges with
increased fault difficulty, F(l, 28) = 24.66, p = .0001. Thus, as faults increased in difficulty,
the less-efficient group viewed significantly more gauges

Similar significant differences were found in the number of components viewed by students
in the two groups. There was a main effect of group and an interaction of group (Quick vs.
Slow) with trials (see Table 2). Not only did the less-efficient students make significantly
more component checks, their number increased significantly as faults became more difficult.
As with gauge checking, there was a significant linear trend showing increased viewing of
component with increased fault difficulty, F(l, 28) = 13.07, p = .001.

Summary. By definition, the less-efficient students made more mouse clicking actions.
However, a significant difference between the less-efficient and efficient troubleshooters was
found only in the number of gauges and components viewed. These results suggest that the
primary difference between efficient and less-efficient troubleshooters was in the number of
diagnostic tests. The less-efficient students conducted significantly more tests, and this dif-
ference became more pronounced as faults increased in difficulty. These students could thus

13

be characterized as experimenters in that they were attempting to induce the failed compo-
nent by searching for abnormal gauges. The more-efficient students conducted significantly
fewer experiments, suggesting a better search of the hypothesis space.

Study 2: Effects of Resource Bounds

In the real world, many kinds of external constraints operate during diagnosis. The second
study was addressed at investigating the effects of resource bounds during diagnosis. The
central questions in this study were the role of resource bounds and their resulting impacts
on students' diagnostic strategies.

We investigated the effects of two kinds of resource bounds on students' diagnostic strate-
gies: time and cost. Time limits within Turbinia were implemented by restricting the time
available to diagnose faults. Cost limits within Turbinia were implemented by adding a
"Cost" window to the interface, next to the window that kept track of elapsed time. Upon
startup, this window displayed a number that was decremented by one each time a diag-
nostic test was conducted. In the case of Turbinia, this corresponded to consulting a gauge
attached to a component.

Method
Twenty-four Georgia Tech Naval ROTC cadets served as students in the study2. The

study consisted of three sessions, each lasting approximately two hours. The first session
was a training phase, in which students diagnosed 8 faults using Turbinia and the intelligent
tutor, Vyasa.

The next two sessions were test sessions. In these sessions, students were randomly
assigned to one of four conditions: 1) time and cost bounds, 2) cost bound only, 3) time
bound only, 4) no bounds. In each test session, students diagnosed 8 faults using only
Turbinia. The fault ordering was identical for all students in all sessions, and all faults were
novel.

Design. There were two main independent variables of interest: diagnosis time (bounded,
unbounded) and diagnosis cost (bounded, unbounded), resulting in a 2 X 2 between-subjects
design.

Bounds on time and costs for each fault were determined by using baseline data from
Study 1. From these data, we calculated the mean solution time and mean number of gauges
viewed per fault condition. For diagnosis time, students in the unbounded time condition
were given 10 minutes to diagnose each fault. In the bounded time condition, for each fault
condition, students were given the mean time to solution from Study 1, rounded up to the
nearest minute. For diagnosis costs, students in the unbounded cost condition were given
100 cost units for diagnosing each fault (an ample amount). In the bounded time condition,
for each fault condition, the cost window was initialized with the mean number of gauge

2The data from one student were discarded due to an experimenter error.

14

COST
yes no

N yes
no

6
6

6
5

Proportion
Diagnosed

yes
no

.75

.68
.56
.90

Time
(mins)

yes
no

4.03
6.14

4.76
4.13

Mouse
Actions

yes
no

39.37
49.95

44.79
59.35

Gauge
TIME Actions

yes
no

9.95
14.00

14.56
17.85

Component
Actions

yes
no

11.33
16.18

13.06
18.05

Schematic
Actions

yes
no

4.20
5.72

3.62
4.40

Symptom
Actions

yes
no

1.66
2.18

1.83
1.70

Diagnosis
Actions

yes
no

4.31
3.64

3.79
5.65

Table 3: Proportion of faults diagnosed, time, and mean number of mouse actions per
condition (yes=bounded; no=unbounded).

consultations from Study 1, rounded up to the nearest integer.
Results
In our analysis, we considered two performance measures: the number of faults diagnosed

and the time to solution per fault successfully diagnosed. We also considered several process
measures: the total number of mouse actions and the number of mouse actions in the five
mouse action categories. We conducted ANOVA on the performance and process measures,
with COST and TIME as the independent variables. Means for each condition are shown in
Table 3.

Our results indicate that students with no resource bounds exhibited the most successful
diagnostic performance. Bounds on time allowed for diagnosing faults led to a reduction
in the overall number of actions performed and components viewed, without appearing to
affect performance. Bounds on the number of diagnostic tests (COST) reduced search in the
experiment space, which appeared to negatively affect diagnostic performance. As suggested
by results from the first study, testing was greatly relied upon by students (perhaps due to
the structure of the Turbinia environment), and removing this capability adversely affected
performance. Students with no time bounds but with cost bounds appeared to adopt a
conservative diagnostic strategy, which in the end did not prove beneficial. Taken together,

15

these suggest results that students' diagnostic strategies were sensitive to constraints in the
external task environment.

Discussion

In this paper, we have presented analyses of students' diagnostic strategies in the context
of an interactive multimedia simulation environment, called Turbinia. We have argued that
the use of such simulation systems provide opportunities for analyzing student learning and
performance in complex domains.

Results from the first study show that the students performed a large number of diagnostic
tests, suggesting that they were primarily engaged in search of the experiment problem
space. Unlike other studies where troubleshooters used strategies such as "half-split" or
symptomatic search (White and Frederiksen, 1990), the students in the present study did
not seem to engage in much symptom evaluation, and did not seem to rely on symptom-fault
pairs. This is perhaps due to their lack of experience in the domain, the complexity of the
Turbinia environment, and the great ease of conducting tests in Turbinia.

Students also appeared to rely on a strategy of confirming leading hypotheses, rather
than selecting tests that served to disconfirm a maximal number of possible hypotheses.
The technique of selecting a measurement that produces maximal elimination of hypotheses
is frequently used in AI models of troubleshooting (de Kleer, 1990). As discussed, while the
negative-test strategy is generally acknowledged to be an efficient technique, its applicability
is, in reality, a function on the distribution of positive and negative instances. The distri-
bution of abnormal gauges in Turbinia is such that the positive-test strategy is a reasonable
heuristic. In addition, the scarcity of the negative-test strategy may also be due to students'
relative inexperience in the domain.

The results of our analyses of students' diagnostic efficiency are consistent with those
found in scientific discovery (Klahr and Dunbar, 1988). We found that the primary difference
between the diagnostic strategies of efficient and less-efficient students was in the number
experiments conducted. The less-efficient students appeared to adopt a highly data-driven
strategy of searching for abnormal gauges. This strategy could be viewed as a kind of
abductive process, in which finding abnormal gauge readings helped to induce the faulty
component. The fact that the more efficient students performed significantly fewer diagnostic
tests suggested that they engaged in a better search of the hypothesis problem space. It is
possible that differences in prior knowledge about steam engines accounted for students'
ability to formulate and effectively search the hypothesis space.

The results from second study suggest that learning in the context of a simulation en-
vironments impact the kinds of strategies adopted by students. In particular, we examined
the effects of imposing resource bounds on students' diagnostic strategies. Students with
no resource bounds exhibited the most successful diagnostic performance. Bounds on time
allowed for diagnosing faults led to a reduction in the overall number of actions performed

16

and components viewed, without appearing to affect performance. Bounds on the number
of diagnostic tests (COST) reduced search in the experiment space, which appeared to neg-
atively affect diagnostic performance. As suggested by this first study, testing was greatly
relied upon by students (likely due to the structure of the Turbinia environment), and re-
moving this capability adversely affected performance. Students with no time bounds but
with cost bounds appeared to adopt a conservative diagnostic strategy, which in the end did
not prove beneficial.

In our study, the cost factor (bounds on the number of experiments) appeared to have the
largest effects on diagnostic efficiency and accuracy. We are currently working on augmenting
the DPSS model to account for these results. This requires analyzing the role of experimen-
tation within both DPSS and the task environment. In DPSS, experiments are conducted
to generate or test hypotheses, or to gather data (Klahr and Dunbar, 1988). In Turbinia,
experiments consisted of reading gauges. Gauges had a fairly high density and, in the ex-
perimental conditions with no cost bounds, their access was cheap and easy. Our modeling
approach involves adding an additional component to the search framework. Specifically,
our hypothesis is that when considering a diagnostic test, the reasoner first estimates the
cost of a particular diagnostic test against the expected information gain. As the reasoner
gains expertise, these estimates better reflect the cost structure of the task environment.
We anticipate that a model based on this approach will better capture the decisions and
complexity faced by troubleshooters in real-world, resource-bounded situations.

Designing for Fidelity. Software simulation systems are built upon some underlying
model of a real-world phenomena. The kind of model embodied in the system is defined as the
fidelity of that simulation (Collins, in press). In one common approach, the system designer
maintains epistemic fidelity with the external system (Wenger, 1987). That is, the represen-
tations used in the simulation represent the knowledge structures of the mental model held
by the expert. Within Turbinia, the organization of systems, subsystems, and components
were modeled on an expert's understanding of the marine power plant (Govindaraj and Su,
1988). The learner is assumed to internalize that mental model through interacting with the
system.

Results from our studies offer feedback on the design of such systems. The results show
that students' diagnostic strategies were clearly sensitive to features and constraints present
in the diagnostic situation. For example, results from the first study indicated that students
relied highly on gauge testing. This is perhaps due to the great ease of consulting gauges
in Turbinia. In contrast, tests in real-world troubleshooting situations may be expensive or
time-consuming. Moreover, there may be a high penalty for mis-diagnosis.

Therefore, we argue that there exists an additional aspect of fidelity in the design of
dynamical simulations. This fidelity, which we term the fidelity of interaction, captures
the costs and resource bounds of the corresponding situation. For example, in the medical
domain, the cost of a mis-diagnosis can be very expensive. Similarly, conducting many
expensive and time-consuming tests is not always the best course of action. These kinds of

17

factors should be captured in the simulation. Preserving this fidelity will enable students to
develop strategies that are faithful to the activity demands of real-world situations.

3 Learning to Troubleshoot

CELIA (Redmond, 1992) models the memory and reasoning capabilities of a novice trouble
shooter. The novice has very little in the way of a domain model to start with, but with
experience, it both acquires cases and updates its domain model. What is particularly
interesting about CELIA is that it inserts case-based reasoning and the use of cases in
reasoning into a broader model of memory that reasons using several different methods and
several different kinds of knowledge.

CELIA acts as an apprentice mechanic. It solves problems by itself, and more impor-
tantly, it learns by watching and listening to a teacher explain his reasoning about particular
cases, and integrating those experiences and what is learned from them with what it already
knows. CELIA uses case-based reasoning, but it is not a case-based reasoner per se. That
is, it uses several different kinds of knowledge to reason, among them cases. While it learns
new cases and new indexes, it also learns several other things and uses a variety of different
learning methods.

CELIA takes as input several sequences of teacher actions and explanations collected
while observing teachers in an area vocational technical school. CELIA's memory, which is
meant to hold the same sorts of knowledge a student might have, holds several different kinds
of knowledge: an (impoverished and possibly incorrect) causal model of how an automobile
engine and all of its parts work, a model (also impoverished and incorrect) of the reasoning
process employed in troubleshooting, and a set of trouble-shooting experiences (both those
of the student and those of the student watching the expert).

As a result of its learning experiences, CELIA's knowledge improves in several ways,
allowing it to perform better: it refines and elaborates its models of the device and of the
diagnosis process, it collects new troubleshooting experiences, and it learns the applicability
of its troubleshooting experiences.

CELIA is an active intentional learner. As it watches and listens to a teacher performing
some troubleshooting task, it predicts what the teacher will do or say next. It then observes
or listens to the teacher. When predictions don't match what the teacher says or does, it
attempts to explain the discrepancy and learn from it. Case-based reasoning's major roles
are in aiding the prediction and explanation processes. Predictions that the student makes
often come from previous troubleshooting cases remembered in the course of reasoning.
Explanations of how it could have avoided a mistake often are in the form of cases it could
have recalled at the time that would have allowed it to make the correct prediction. In
addition, CELIA internalizes its experience observing the teacher into a troubleshooting
case and uses those in later problem solving.

18

CELIA's prediction process makes use of all the different kinds of knowledge it has
available. It predicts what a teacher might do next by retrieving cases that can make a
prediction and by using its models, preferring the predictions made by cases over other
predictions. This is because its models are known to be incomplete and buggy, while its
cases are known to be instances of troubleshooting sequences that have been carried out.
In essense, it predicts the thing that it would be most likely to do next were it doing the
problem solving itself.

After discovering descrepancies between what it was expecting and what happened,
CELIA uses cases again to help it explain its mistake and repair its knowledge. Of par-
ticular importance in this step is its process of figuring out how it could have avoided its
mistake. In this step, it asks itself whether it already knew what it needed to know to make
the correct prediction, and if so, why it didn't make the prediction. Often, making the right
prediction depends on recalling a different case than the one it recalled. When that happens,
it considers why it did not recall that case. In general, it is because it had it indexed poorly.
CELIA refines the indexes on that case so that it would have been recalled in the current
instance. It also refines the indexes of the case that made the poor prediction so that it will
not be recalled under similar circumstances in the future. In this way, CELIA learns the
applicability of its cases.

One other piece of CELIA related to cases is its process of making its experience watching
the teacher into a troubleshooting case. Though on the surface this may seem like a trivial
process, it is in fact, quite complex. The reason is this. CELIA is trying to learn how to
do a task. Every cognitive task is composed of several steps, each of which has a cognitive
subgoal attached to it (e.g., I need to make a hypothesis, I need to explain something). The
better the student can do at explaining why the teacher did what he did and recording that,
the more useful a case the student remembers will be during later reasoning. But explaining
someone else's motivations is difficult. We know our own reasoning subgoals, but we have to
guess at someone else's. Making the teacher's experience troubleshooting a car into a useful
case for the student requires the student to analyze the things the teacher does, explain why
the teacher did what he did, and connect together the different things the teacher said and
did in a coherent way. CELIA's prediction process is key to doing this. CELIA makes sense
of what the teacher is doing and sets itself up for active learning at the same time.

A major conclusion of this work is that early in learning, one of the most useful results
of apprenticeship is the acquisition of cases of successful problem solving. These cases, if
acquired, can guide later problem solving and prediction. Experimentation with CELIA
shows that early in learning, remembering cases is the most powerful form of learning and
other forms do not provide a major advantage. This is due partly to the limited domain
knowledge the student has. With little domain knowledge, he can't form explanations easily
about what is going on. Acquisition of cases, however, allows him to store new domain
knowledge associated with the kinds of situations it is useful in. Later in the learning
process, when many cases have been acquired, that domain knowledge can be migrated out

19

of the cases to form a general model of the domain. Early on, however, the student does not
know enough about applicability of the new pieces of knowledge he is acquiring to build a
coherent model. After much experience, applicability of knowledge can be learned.

Acquisition of cases is more than just recording the sequence of events of some situation.
A useful case is far more organized than being just a sequence. In particular, a case is most
useful when the goals of the reasoner are associated with each step of the sequence of events.
Associating goals with actions can be very hard. CELIA shows that it can be done as a
natural consequence of the process of following along with what the instructor is doing as
he solves a problem. Part of that process involves predicting the goals of the instructor,
and based on those goals, what his actions will be. This understanding process provides the
goals that need to be associated with steps in a sequence of events.

CELIA provides a model of learning that happens without strong knowledge of the do-
main. CELIA's learning processes allow it to bootstrap that knowledge from its experiences
watching and listening to an expert problem solver. Through remembering those experi-
ences, the student gets a good start toward being able to function in the domain. At the
same time, he identifies places where he is lacking knowledge. The student interacts with
the expert instructor to acquire some of that missing knowledge. Learning helps both future
problem solving and future learning.

The instructor plays a crucial role in apprenticeship learning, but using the instructor
to directly implant knowledge in the novice is unreasonable. CELIA shows that demands
on an instructor don't have to be as excessive as that if the student takes responsibility for
actively following the instructor's example. The instructor's job is to solve problems in front
of students, to provide explanations at times when he thinks students may not know all the
knowledge they need to follow him, to answer questions, and to give hints when students
are having trouble. Effective apprenticeship requires the student to ask questions and the
instructor to provide the right level of hints and explanations. Or course, more effort must
be put into giving more concrete guidelines about what those hints and explanations need
to look like.

In essense, CELIA models the ideal apprentice. It doesn't model the student who is
having trouble, nor does it model the one who doesn't follow what the teacher is doing. As
a model of the ideal, however, it can tell us much about the kinds of situations that enable
successful learning. In particular, it makes the following testable cognitive predictions:

• Learning by observing and listening to an expert leads to significant increases in per-
formance after only limited exposure to examples if the student plays an active role in
understanding what the expert is doing.

CELIA's performance increased considerably as a result of its experiences observing the
teacher solve problems. We cannot claim, however, that merely collecting sequences of
actions is what made CELIA's performance improve. Key to its improvement was that it
analyzed those cases, explaining to itself (as best it could) the teacher's actions, and making

20

those experiences its own. That is, it always explained to itself why each step of the process
was being carried out. This is consistent with research on self-explanation (Chi et al., 1989;
Pirolli and Recker, 1994).

• During early learning of a task and domain, collecting cases is the single most useful
type of knowledge acquired. Refining and adding to models of the domain and task
result in far less improvement in capabilities.

Recall that CELIA adds to its models and refines its indexes in addition to adding cases to
its case library. Recall also that it has access to all ofthat knowledge when it reasons. Cases
provide only one of its knowledge sources.

Several ablation studies were run to see where CELIA's increase in performance was com-
ing from, and the most significant increases were coming from having more cases available.
When its ability to use its cases during problem solving was removed, so was much of its
capability. Note that CELIA is not biased toward use of cases or collection of case knowledge
such that this result is built in. It learns as much as it can from each of its experiences,
collecting cases and adding to its models each time. While it prefers to make predictions
based on cases, it is able to use its other knowledge fully. Early in learning, that knowledge
is very buggy and very incomplete. It grows much slower than the case library does.

• It is difficult to improve the accuracy of case retrieval early on. Attempts to make
students aware of when their knowledge is applicable may not succeed because they
are missing crucial domain knowledge. As domain knowledge acrues, this problem
abates.

This result says that early in learning students will put poor indexes on cases because they do
not have enough knowledge to be able to determine the applicability of their knowledge. One
could point it out, but they may not have enough knowledge to understand the explanation.
As they make mistakes and are forced to analyze the indexes on their cases, indexing becomes
better. And as students learn more, they are better able to index cases appropriately the
first time.

• It is better to present a variety of types of problems early on rather than concentrating
on several very similar ones.

• Repeated presentation of the same problem will not lead to long term improved per-
formance. Variations on a problem work better.

These two results come simply from the statistics of experiments that were run, but they
make a lot of sense. Experience with a wide variety of problems seeds the space of experiences
broadly, implying that cases will be used often to make predictions. The use of cases to
make predictions, even if the wrong predictions are made, is important, because it gives the

21

reasoner an opportunity to refine its indexing and learn when its experiences and the things
it knows are applicable. Seeding the case library with many similar cases means that later
in problem solving, cases will be recalled to make predictions less often. At the same time,
experience with variations of a problem allows a particular piece of the space to be examined
from many different perspectives, allowing the applicability of the knowledge acquired to be
learned. Are these two results contradictory? No. The first says that broad exposure should
be given early on. The second says that if a student is having trouble with some concept,
then give variations of the problem to the student to work on as drills, not the same one
over and over.

4 Theory-Based Design of Interactive Multimedia

In order to design our interactive environment, our theoretical and empirical studies of trou-
bleshooting needed complementary research in the area of design of interactive computing
technologies for learning and aiding. Our ultimate goal is to combine these two threads
in order to design an interactive multimedia environment for supporting the acquisition of
troubleshooting skills and strategies.

Indeed, recent advances in computing technologies have resulted in the proliferation of
multimedia repositories, libraries, and databases. These offer the potential for providing
students with access to a wide variety of interconnected information resources and activities.
Moreover, network-accessibility allows these resources to be distributed over wide distances.

However, access to multimedia system does not, by itself, guarantee knowledge. Mul-
timedia systems instead should provide access to information and activities that support
effective knowledge construction and learning by students. Unfortunately, little research
has been conducted into how students will actually use such systems, what kinds of usage
actually improves learning, and what types of educational materials these systems should
provide.

To address these issues, we have developed a preliminary theory for designing educational
multimedia systems based upon the cognitive and learning needs of students. This theory
argues that the design of multimedia systems should not be based on the physical properties
of the information (e.g., pictures, audio, video, etc.) Research on the effects of media types on
learning have been inconclusive in demonstrating the superiority of one physical media over
another reflects the fact that many factors, above and beyond simple media, affect a student's
learning process. These factors include, for example, students' background knowledge, their
motivation and interests, their learning strategies and goals, and the overall learning context
(Recker and Pirolli, 1995). Therefore, rather than base the design of a hypermedia system
on the physical properties of the information contained in the system, we propose that the
indices and structure of the system should be based on cognitive aspects of the users of that
information. By this, we mean that the access methods in a hypermedia systems should be

22

"cognitively relevant" to the learning and information seeking goals of the user.
These cognitive media types form the basic building blocks during system design (Recker

and Ram, 1994). They are based on an understanding of the learning and constructive
processes of students, and encapsulate different methods or strategies for problem solving
and learning. These strategies rely on specific media characteristics that facilitate specific
learning activities, which in turn are enabled by specific kinds of physical media.

Text is an example of a physical media type. It can be used to represent several cognitive
media types. For example, text can be used to present abstract, general instructions. Text
can also be used to display instantiations of these concepts within examples, or to provide
explanations and annotations. Animations and pictures are other examples of physical media
types. Animations can be used to exemplify general or specific instantiations of dynamic
displays of processes. Pictures can be used to display graphical relations among concepts.
Each of these cognitive media facilitate different learning inferences.

Cognitive media are characterized in terms of the inferential processes of the human user
rather than physical properties of the computer representation. Cognitive media encapsulate
different kinds of problem solving information which might, in turn, be composed of many
different physical media.

We believe that it is essential to focus on cognitive media in order to understand how
best to design multimedia systems that can support novices in learning or training situations
as well as aiding experts in on-the-job situations. We are developing a theory and taxonomy
of cognitive media types that we believe are useful in learning situations. In addition,
we are attempting to specify at which point during learning they may prove to be more
advantageous. For example, is a general principle more useful at the beginning of a learning
session, or after the student has gained some experience in a domain? Finally, we are
interested in determining the physical media types that can best represent the different
cognitive media types.

Cognitive Media Types

We view multimedia information as composed of three layers: (1) media types, (2) media
characteristics, and (3) cognitive media types.

At the lowest level are media types, for example, text, video, animation, etc. They
are defined by characteristics of the physical (on-screen) media used to represent different
kinds of information. Although often distinguished based on perceptual modalities (for
example, visual vs. aural), they may be also characterized by the types of inferences that
they facilitate. For example, figures (or diagrammatic representations) can facilitate spatial
inferences (Larkin and Simon, 1987; Larkin, 1988) Thus, media types can be classified based
on "cognitive" distinctions that depend not on physical characteristics of media but on the
reasoning processes of users.

For example, consider the following example from Boden (Boden, 1991). A 20-foot rope

23

Examples of
Physical Media

Text

Examples of
Cognitive Media Types

Animations
Pictures

Sound

Abstract principles
Specific instructions

Annotated cases or examples
Explanations
Annotations

Dynamic display of process
Graphical display of relation among processes

Examples
 Diagrams

Voice-over of text
Warnings

Summaries

Table 4: Partial taxonomy of physical media and cognitive media types

is tied to and hanging between two buildings that are some distance apart. Given that the
lowest point of the rope is 10-feet below the tethered ends, how far apart are the buildings?
In this example, most people tend to draw a diagrammatic representation of the problem
showing the two buildings and a rope hanging in some sort of arc between them—this
representation enables all kinds of fancy mathematical (geometric) reasoning which in this
case is absolutely the wrong way to solve the problem. Boden points out that mathematically-
inclined people tend to take a long time to solve this problem because they usually start
by drawing a picture of the hanging rope, whereas less math-sophisticated people find it
easier to solve because they do not rely on diagram-based geometric reasoning. The point
is that a type of physical media—here, a diagram—can affect the course of problem solving
by facilitating certain kinds of inferences and making others harder.

At the next level are the media characteristics (Kozma, 1991). These are a characteriza-
tion of the kinds of problem-solving actions that people might perform during a task. For
example, zooming is a problem-solving action that focuses attention on and highlights the
details of a problem situation; such an action is easier in a diagrammatic representation than
in a symbolic one.

Finally, at the level above media characteristics, are cognitive media types. For example,
zooming is a particular problem solving action—more precisely, a particular schema for a
problem solving action which results in certain inferences—whereas at the higher level one
might have Schemas for problem solving strategies as a whole. So, for example, one may resort
to case-based reasoning (Kolodner, 1993), go back to first principles using basic definitions
and equations, or reason using constructive simulations (Soloway et aJ., 1992).

24

A case is a type of media (characterized at the cognitive level) that facilitates the former
(case-based reasoning) problem solving strategy. Using a case requires (among other things)
zooming into the differences between the case and the problem situation so that the differ-
ences can be characterized and the case suitably adapted. Zooming in and adaptation are
specific problem solving actions that are facilitated by different media characteristics; these
characteristics, in turn, are enabled by specific physical media.

To take another example, consider Emile, a multimedia environment in which subjects
learn physics by constructing physics simulations (Soloway et al., 1992). While the physical
media characteristics - animations - are similar to those of many other animation-based
learning environments, the crucial difference lies in the reasoning processes used by the
student—here, constructive experimentation rather than passive observation.

We are developing a taxonomy of the kinds of cognitive media types used in learning and
how these are best represented within of physical media types. We are also interested in
determining the kinds of learning inferences they facilitate. Table 4 shows a partial taxonomy
and examples of types of physical media we are using, and the kinds of cognitive media that
can be represented within each physical media.

It is important to note that physical media types and media characteristics can be defined
without a strong appeal to a cognitive theory of reasoning and learning. This is not true of
cognitive media types—the structure, content, and use of cognitive media types is a function
of the researcher's theory of cognition. This has two implications. First, the design of
effective hypermedia environments must take into account a cognitive theory of how the user
interacts with the environment. In particular, the design must be based on considerations
of how the user will think, use, interact with, and learn from the environment. The second
implication is that such cognitively-based hypermedia environments are not just likely to be
more effective, but in addition might be used to test the validity of the cognitive principles
on which they are based.

5 Implications for Design

The research and results we have presented thus far have many implications for the de-
sign of an interactive learning environment designed to help students learn and engage in
troubleshooting. The research has implications for (1) how to structure the troubleshoot-
ing problem solving environment, (2) how to help learners acquire troubleshooting skills,
(3) how to provide access to information in support of the task, and (4) how to support
troubleshooters during the troubleshooting process.

25

Learning to Troubleshoot

Much research in learning theory stresses the active involvement of learners during the pro-
cess. In CELIA, the active involvement primarily takes the form of predicting and explaining
the teacher's actions (Redmond, 1992). This conclusion is also supported by other research
on the self-explanation effect. Engaging in self-explanations has been shown to reliably
correlate with positive learning learning outcomes (Chi et al., 1989; Fergusson-Hessler and
de Jong, 1990; Pirolli and Recker, 1994; Reckerand Pirolli, 1995). Furthermore, CELIA sug-
gests that students need to notice failures between their predictions and actual outcomes, as
these can serve as triggers for useful learning opportunities (Redmond, 1992).

The teacher models the task for the student, thereby providing an opportunity for stu-
dents to learn by example (LeFevre and Dixon, 1986; Lewis and Anderson, 1985; Pirolli and
Anderson, 1985; Sweller and Cooper, 1985). The teacher, on the other hand, tries to en-
courage active student involvement by structuring the task into prediction and explanation
phases. Furthermore, during the explanation phase, the teacher facilitate the learner's task
by making goals and actions explicit and by only considering one hypothesis at a time. This
process may lead the student toward acquiring better troubleshooting strategies.

In sum, the system should:

1. Encourage active, intentional learning.

2. Encourage prediction of teacher's next step.

3. Highlight prediction failures.

4. Encourage explanation of discrepancies between what it was expecting and what hap-
pened. This can lead to a re-indexing of cases and an understanding of the applicability
of cases.

5. Model problem solving for learners. This may allow the learner to acquire new cases
through observation. The steps performed by the system should be presented in a way
that allows easy derivation and understanding of cases.

6. When possible, the system should model an initial set of examples or cases that cover
a wide range of the problem solving to be learned.

Structuring Troubleshooting

The theoretical framework suggests ways in which the troubleshooting process may be struc-
tured. Specifically, the process should be structured into (1) problem elaboration, (2) hy-
pothesis generation, (3) hypotheses testing, and (4) hypothesis evaluation phases.

The TS cognitive model and the specific protocol simulations suggest coaching and mod-
elling tactics that could be used by the system. For example, during coaching and modelling,

26

the teacher can explicitly structure the troubleshooting process so as to communicate the
general framework of hypothesis generation, testing, and evaluation (Merrill and Reiser,
1994). During hypothesis generation, the learner can be given the opportunity to acquire
larger symptom fault-sets by engaging in problem solving, and by engaging in periods of
problem solving reflection. Reflecting over problem solving episodes has been suggested to
lead to improved learning (Pirolli and Recker, 1994; Lajoie and Lesgold, 1989). Similarly,
students can be given support for developing better causal models as these help to focus the
search (Merrill and Reiser, 1994; White, 1993).

As suggested by the results from our empirical studies, learners should be given the
opportunity to acquire a wider range of troubleshooting strategies. These experiences can
help them explore the time and cost constraints present in different troubleshooting contexts.
For example, as they gain experience, students should be encouraged to generate multiple
hypotheses. Similarly, coaching tactics can be used to help students learn to adapt to the
cost structure of the particular device and troubleshooting situation by helping them develop
strategies for identifying tests that are cheap to conduct, yet are maximally informative.
They should also learn to select tests that serve to disconfirm a maximal number of possible
hypotheses.

In sum, the system's interface should

1. Structure troubleshooting process into hypothesis generation and testing phases.

2. Act as external scratch pad to keep track of processes.

3. Encourage reflection over problem solutions.

4. Encourage acquisition of troubleshooting strategies.

Designing for Fidelity

The results from the empirical studies using Turbinia provide important feedback and im-
plications for the design of software simulation and learning environments. For example,
the results raise issues in the kinds of fidelity that are designed in a computer simulation
in order to model the corresponding external system (Collins, in press). In one common
approach, the system designer attempts to maintain an epistemic fidelity with the external
system (Wenger, 1987). In this view, the representations used in the simulation capture
the structural organization of knowledge assumed to be held by the expert. An implicit
instructional assumption is that the learner internalizes the expert's mental model through
interacting with the simulation. In Turbinia, the organization of systems, subsystems, and
components were modeled on an expert's understanding of the marine power plant (Govin-
daraj and Su, 1988). In another approach, the simulation maintains a dynamic or temporal
fidelity with the external system. That is, as the external system changes through time, the

27

corresponding simulation reflects these changes. Turbinia also attempts to maintain a kind
of dynamic fidelity, as the effects of faults propagate through the simulation with time.

We argue the results from our studies show that students develop strategies that are
tuned to particular constraints present in the simulation environment. In short, the problem
solving strategies develop from exposure to a range of situation contexts exhibited by the
system. These results, then, suggest a third, important kind of fidelity to be considered
during design - one that we have termed fidelity of interaction. In this view, the design of
simulations of dynamical domains should attempt to preserve the costs and resource bounds
of target situations. This will enable students to develop strategies that are faithful to the
activity demands of real-world situations.

In sum, the system should:

1. Encourage acquisition of troubleshooting strategies that are sensitive to resource bounds
of situations.

2. Design for fidelity of interaction.

Intelligent Support and Aid

In our approach, the troubleshooting environment structures the task for the user, focus on
the current context, manage details, and perform simple bookkeeping functions in order to
reduce complexity. The interface attempts to keep salient the currently available options.

Given our view of troubleshooting as a complex process, with substantial strategic and
monitoring components, the pedagogical goals go beyond simply communicating facts and
rules. As such, the apprenticeship learning paradigm is more appropriate than simple tu-
toring. Students need to actively predict outcomes of the actions, and, equally importantly,
to notice failures between their predictions and actual outcomes. Such failures can be serve
as triggers for useful learning opportunities. Failures indicate either incorrect knowledge or
knowledge gaps that need to be filled.

Support for the process can be offered by the interface in the following ways: by struc-
turing the task, by focusing on the current context, by managing details, and by performing
simple bookkeeping functions by acting as an external memory.

The troubleshooting task can be structured and focused as follows. The interface can
support two context: hypothesis generation and test. The user can be one of these two
contexts. The interface should keep track of useful symptom-fault pairs, which the user
can consult. As the user gains experience, and becomes attuned to device behavior, this
catalogue of indices can be added to.

The interface can also allow different views on the system, allowing either causal or
topographic problem solving strategies. Cause knowledge allows reasoning via fluid flows to
identify possible faulty components. Topographic knowledge uses component location and
neighborhoods to identify potential faulty components.

28

The interface also keeps track of all hypothesis that have been considered and all tests
that have been conducted. This capability provides an external memory for the user.

In sum, the system should:

1. Act as external memory to reduce cognitive load on user.

2. Manage complexity of process by breaking the problem down into a series of sub-steps.

3. Provide structured access to repository of information resources that can be used to
help solve the problem. These information resources include libraries of solved cases,
models of the system, and on-line manuals.

Communication

Communication of the process takes place within an apprenticeship paradigm, and draws
upon a model of the apprenticeship process (Collins et al., 1989). This process can be drawn
upon to suggest interface features that best supports apprenticeship learning. For example,
the troubleshooting goals and actions should be made explicit, as should be the transition
between goals. Complexity can be reduced by only considering active hypotheses.

The interface can also support a period of reflection, by allowing the learner to reconsider
his/her solution, including incorrect paths. The solution can also be compared to one from
an expert.

In addition, since we view the troubleshooting as a dual process, the environment and the
learner can alternate role playing. For example, the learner could choose to act as theorist
while the simulation tutor as as experimenter, or vice versa.

6 Designing for a Help-Desk Domain

Based upon the work distilled in the previous sections, we have been implementing a proto-
type interactive environment for learning and aiding troubleshooting. Initially we intended
our target domain to be car engine troubleshooting. However, it quickly became obvious
that we lacked access to the necessary experts and to usable cases. At the same time, we
had the unique opportunity of investigating diagnosis and troubleshooting in the context of
the telephone help-desk work environment. In this domain, help-desk specialists for a large
computer company receive telephone calls from customers experiencing problems with their
computer systems. Through conversing with the customer, asking questions, and drawing
upon information resources, they diagnose the problem and propose solutions.

The help-desk work domain is an ideal test-bed for our design. The help-desk specialist
engages in complex troubleshooting, under difficult and time-constrained conditions. The
customers (and the company) want immediate solutions to their problems. However, the

29

customers are sometimes not expert enough to correctly articulate problems and symptoms.
In addition, the help-desks are limited in the kinds of diagnostic tests that they can perform,
since they are primarily limited to conversations and question-asking.

Finally, with the wide use computer networks, computers, databases, and information
technologies, the specialist has access to a wide variety of information resources that can
be used to help diagnose the problem. These resources are stored in various formats, are
accorded different kinds of status, and are retrieval through a variety of means. While
answers to assist a current diagnosis problem are highly likely to be contained within these
information resources, the precise answer is difficult to obtain quickly. Information flows
from 3 general sources. First, a specialist may ask another specialist. This can be a reliable
means, if the appropriate specialist is know. On the other hand, it can be intrusive, and it
can be difficult to consult another person while in the middle of a phone call.

Second, manuals for the various software and hardware products can be consults. These
manuals are often paper-based and thus do not have electronic indexing. In addition, they
are typically not written in a way that supports diagnosis.

Third, specialists have access to a variety of on-line databases. These databases store
prior calls handled by specialists, newsgroup articles that discuss problems, and official
problem reports and solutions

The specialist thus performs diagnosis in an information-rich environment. While there
are certainly a multitude of advantages accompanying the new ease in accessing information,
there also disadvantages. For example, with ubiquitous information, the specialist must
carefully consider their means for searching information in order to avoid an overwhelming
response to queries. They must balance the benefits of information retrieval against the
costs of processing that information. They must consider which sources to search. They
must more carefully consider the origin of the information in order to retrieve the highest
quality information. They must more carefully filter what is retrieved.

These problems become particularly salient in time-critical situations. Users perform-
ing information-rich tasks with limited time to make decisions and consider information
sources must develop satisficing strategies (Card et al., 1993; Simon, 1973). That is, they
must quickly decide the most relevant source, devise means for querying these sources while
avoiding a large query return, then filter and make-sense of the returned information.

In the description of the prototype that follows, our scenarios are drawn from the help-
desk situation. However, we note that the design of the support environment is sufficiently
generic to transfer to other help-desk troubleshooting situations.

The Prototype

Figure 1 shows the initial screen of the help-desk troubleshooting system (HD-TS). From
this screen, the learner can select the troubleshooting mode desired. Currently, three modes
are supported.

30

Insert Figure 1 about here

1. Observing Cases. In this mode, the novice can observe an articulate teacher model
the troubleshooting process via a series of cases. Here we assume that the learner
does not know anything about the process on engaging in troubleshooting, and that a
productive starting point is to observe an expert model the process.

2. Interactive Observation: Learning by predicting and explaining. In this mode, the more
advanced learner engages in and is actively involved in playing out the case studies.
The learner engages in the same activities that CELIA, our computational model of
the ideal apprenticeship learner, performs.

3. Troubleshooting. In this mode, the troubleshooter solves diagnosis problems, with the
assistance and support of the environment.

Figure 2 shows the generic, start-up screen after selecting any of the modes. The top part
of the screen shows the mode - in this case "Case Studies." In addition, the initial complaint
is listed. The middle part of the screen contains real-estate for managing troubleshooting
steps, scratch pads for keeping track of proposed hypotheses, conducted tests, and the on-
going problem solving context. The bottom of the screen helps the learner keep track of
troubleshooting steps. The right part of the screen provides access to various informational
media. Currently implemented cognitive media are:

Insert Figure 2 about here

1. Manuals. Access to relevant pages in manuals.

2. Experts. Access to on-line human experts via video teleconferencing. They can be used
for advice and consulting

3. Company Cases. Access to repository of cases solved by other staff members.

4. Personal Cases. Access to repository of cases solved by the learner.

In the next sections, we describe the three troubleshooting modes in more detail.

31

Observing Cases

In this mode, the user is assumed to be a rank novice. Here, the learner can observe an
articulate teacher as s/he engages in troubleshooting. As suggested by CELIA, the user
learns by observing the articulate teacher model the troubleshooting process. In the upper
right hand part of the screen is a button labeled "Continue." The learner repeatedly clicks
on this button to step through the process. With each mouse click, the expert performs the
next step. Explanations and heuristics for each step are displayed in the window labeled
"Strategies."

A sample case study scenario is as follows. With the first mouse click on "Continue," a
button labeled "What's Wrong?" appears. A mouse click on "Continue" causes the "What's
Wrong" button to be clicked, which, in turn, displays the complaint. In addition, a button
labeled "Verify Complaint" appears. (Simultaneously, the troubleshooting step is highlighted
at the bottom of the screen. Similarly, the strategy window explains the heuristics underlying
each step). Figure 3 shows the screen at this point. A mouse click on the "Continue" button
and the "Verify" button is clicked to display that the complaint has been verified.

At the same time, the "What's Causing It?" button appears. This represents the hypoth-
esis generation phase. A mouse click on the "Continue" button causes several hypotheses
to be proposed. These are stored in the "Active Hypotheses" window in the middle of the
screen. In addition, the "Select Hypothesis" button appears. Figure 4 shows the screen at
this point. Note that a relevant page from the manual and an additional company case have
appeared, selected because they matched the active hypothesis.

Insert Figures 3, 4, 5 about here

A mouse click on the "Continue" button, and a leading hypothesis is selected. This
hypothesis is also highlighted in the "Active Hypotheses" window. At the same time, the
"How to Check?" button appears. This represents the hypothesis testing phase. Figure 5
shows the screen at this point. In addition, note in this screen that the user has chosen to
view a matching company case.

A mouse click on the "Continue" button, and the "How to Check?" button is clicked,
displaying several testing methods. These methods are stored in the "Conducted Test"
window, for easy referral by the learner. A diagram of the relevant area is also displayed.

At the same time, the "What Happened?" button appears. The represents the verifica-
tion/evaluation phase, in which test results are reviewed to suggest further actions. Figure
6 shows the screen at this point.

Figure 7 shows the screen after a second iteration through hypothesis selection and test-
ing. The problem solving context, hypothesis, and testing boxes have been updated.

32

Insert Figures 6, 7 about here

In this mode, we expect students to learn by observing the system model the trou-
bleshooting process. In particular, since the system acts as an articulate and explicit expert,
we expect students to understand the phases of troubleshooting, the processes involved in
each phase, the kinds of strategies applicable at each phase, and general metacognitive
awareness of how diagnosis works.

Interactive Observation

As suggested by CELIA, we want to encourage the learner to take an active role in learning
by engaging in cycles of prediction and explanation as the instructor models troubleshoot-
ing. CELIA modeled this using previous troubleshooting cases remembered in the course
of reasoning to generate a prediction of the instructor's next step. When predictions don't
match what the teacher says or does, it attempts to explain the discrepancy and learn from
it. Explanations of how it could have avoided a mistake often are in the form of cases it
could have recalled at the time that would have allowed it to make the correct prediction.
In addition, CELIA internalizes its experience observing the teacher into a troubleshooting
case and uses those in later problem solving (Redmond, 1992).

We implemented this by segmenting each step into phases where the students generate
their own predictions. These are then matched against the instructor's next step. If the
predictions do not match, the student is prompted to produce an explanation or to access
information resources.

The scenarios in the "Interactive Case Study" are similar to the case study scenarios,
except in three regards:

In particular, in this mode, the learner is asked:

1. to selected each subsequent troubleshooting step, rather than relying on the "Continue"
button.

2. to predict the instructor's steps

3. to compare predictions with the instructor's actions

4. if they do not match, to engage in explanation of the discrepancy

5. to review and reflect on each completed scenario. The on-line review phase then
becomes input in the personal case library.

33

A sample case study scenario is as follows. With the first mouse click, a button la-
beled "What's Wrong?" appears. A click on the "What's Wrong" button displays the
complaint. In addition, a button labeled "Verify Complaint" appears. (Simultaneously, the
troubleshooting step is highlighted at the bottom of the screen. Similarly, the strategy win-
dow explains the heuristics underlying each step). A click on the "Verify" button causes a
display that the complaint has been verified. A relevant company case appears at this point,
selected because it matched the complaint.

At the same time, the "What's Causing It?" button appears. This represents the hypoth-
esis generation phase. A click on this button and several hypotheses are proposed. These
are stored in the "Active Hypotheses" window in the middle of the screen. In addition, the
"Select Hypothesis" button appears. A click on this button, and the learner is asked to
predict the instructor's next step in a pop-up window.

After the learner's prediction, a leading hypothesis is selected. This hypothesis is also
highlighted in the "Active Hypotheses" window. At this point, a relevant page from the
manual and an additional company case appear, selected because they matched the selected
hypothesis.

At the same time, the "How to Check?" button appears. This represents the hypothesis
testing phase. A click on this button, and the learner is asked to predict the instructor's
next step in a pop-up window. After entering the predictions, the "How to Check" button
is clicked, displaying several testing methods. These methods are stored in the "Conducted
Test" window, for easy referral by the learner. A diagram of the relevant area is also
displayed.

At the same time, the "What Happened?" button appears. The represents the verifica-
tion/evaluation phase, in which test results are reviewed to suggest further actions.

After completing the interactive case study, the learner is asked to reflect on the episode,
by clicking on the "Reflect" button. A pop-up window appears in which the learner enters
the important symptoms, hypotheses, and tests in the episode. These data are then entered
and indexed in the personal case library. They can thus be retrieved during subsequent
troubleshooting episodes.

Troubleshooting: Trying out what's learned

In this mode, the help-desk environment acts as a problem solving aid. Here, some of the
interface scaffolding is left in place, while other aspects are faded.

The interface retains the structure that breaks the troubleshooting process into its several
sub-components. Thus, students still engage in the processes of complaint elicitation and
complaint verification, followed by hypothesis generation, testing, and evaluation. This
structure helps the user plan and manage the details of the task. However, the user has
control of the path through the process.

In addition, the environment continues to act as an external scratch pad. As before, a

34

window is used to keep track of the complaint and its elaborations. Windows are used to
keep track of active hypotheses, and tests that have been conducted.

Our on-sight studies of help-desk staff as they perform their job suggest a crucial aspect
of job performance: managing and filtering the vast array of information resources that is
available. Their job is performed in a world of truly ubiquitous information. This information
is available from several sources: digital, paper, or human.

We observed help-desk staff consulting the following resources while handling calls:

• Digital. Help-desk staff have a variety of on-line repositories of information that they
can consult during a call. Access is typically performed via keyword search, though the
help-desk staff can consult these off-line. These repositories include databases of other
calls handled by help-desk staff, informal database of notes posted by other specialists,
and and official databases of notes posted by experts.

• Paper. Help-desk staff may consult manuals for software and hardware that a customer
has problems with

• Human. Help-desk staff may ask other staff members for assistance during a call, or
after.

The access and use of such information is difficult to analyze and characterize because of
its ubiquity. In our initial approach, we have focused on digital information simply because
of its availability. In addition, many summary statistics are available describing use by
employees during the course of performing their work.

7 Conclusion

We have described a prototype interactive, multimedia, learning environment that helps users
learn and engage in effective troubleshooting. The system is intended to help specialists learn
how people perform diagnosis in the context the telephone help-desk work environment. As
the user gains expertise, the system switches its role into one that helps aid and structure
the process.

The design of the environment draws upon two important strands of related research.
First, we reviewed studies on how people perform complex troubleshooting tasks. In addition,
we reviewed results from a model of how people learn to troubleshoot in an apprenticeship
learning situation. This research thus provides an interesting case study of how cognitive
science research can be used to inform the design of tools intended for authentic and complex
work domains.

The research on learning troubleshooting suggests that learners benefit from observing
experts model the troubleshooting process. The benefits are the greatest if the learner

35

attempts to predict and explain the instructors steps. With the process, learners can acquire
experiences (or cases) that may be helpful during subsequent problem solving (Kolodner
1993; Redmond, 1992).

Our research on troubleshooting problem solving suggests that users vary in the kinds
of strategies employed during troubleshooting. In particular, similar to results found in
the domain of scientific discovery, some are primarily experimenters, while the more suc-
cessful troubleshooters are primarily theorists. Finally, the strategies employed are clearly
sensitive to the task resources available. This suggests that an interactive learning environ-
ment support fidelity of interaction so that students learn strategies that are sensitive to the
constraints of the particular troubleshooting context.

Second, we described research that focuses on the theory-based design of interactive learn-
ing environments. We argued that access to multimedia information should be structured in
terms of the cognitive and learning processes that it supports, rather than on the physical
format and properties of actual piece of information.

We then described a prototype of an interactive, multimedia learning environment, called
HD-TS. The system supports users in learning and performing troubleshooting in the tele-
phone help-desk task domain.

In future work, we plan to continue the implementation the troubleshooting environment.
The development work will be complemented by field studies of the help-desk work environ-
ment, and walk-throughs of the system with members of the help-desk staff. These data from
our formative evaluations will enable "user-centered design," will allow us to resolve design
decisions, and to allow us early feedback on the quality and effectiveness of our design.

A particular focus of our future work is on incorporating digital data from the real work
environment into the HD-TS system. As discussed, the help-desk specialists have access to
a wide variety of information resources that they draw upon in order to help during their
diagnosis process. In fact, they have access to much more information that can reasonably
be used within the time-constraints of a telephone call and diagnostic episode. Therefore,
we wish to develop computationally feasible methods that serve to index, retrieve, and filter
real-world information and cases in a manner that is useful for the specialists. The filtering
and presentation of the information must be made in a way that is easily incorporated in to
the current problem solving situation. This problem is becoming increasingly prevalent in
most information-rich tasks, as we enter in the the Age of Information.

Acknowledgements

This research is supported by the Army Research Institute for the Behavioral and Social
Sciences under Contract No. MDA-903-90-K-112 to Janet Kolodner. The development of
Turbinia-Vyasa was sponsored by the Office of Naval Research and contract N00014-87-K-
0482 from Manpower, Personnel, and Training R&D Program.

36

References

Boden, M. (1991). The Creative Mind: Myths and Mechanisms. Abacus, London.

Card, S., Pirolli, P., and Mackinlay, J. (1993). The cost-of-knowledge characteristic func-
tion: Display evaluation for direct-walk dynamic information visualizations. In CHF94:
Human Factors in Computing Systems, pages 238-244, Boston, MA. ACM.

Chi, M., Bassok, M., Lewis, M., Reimann, P., and Glaser, R. (1989). Self-explanations:
How students study and use examples in learning to solve problems. Cognitive Science,
13:145-182.

Collins, A. (in press). Design issues for learning environments. In Vosniadou, S., deCorte,
E., Glaser, R., and Mandl, H., editors, International Perspectives on the Psychological
Foundations of Technology-Based Learning Environments. Springer Verlag, New York.

Collins, A., Brown, J., and Newman, S. (1989). Cognitive apprenticeship: Teaching the craft
of reading, writing, and mathematics. In Resnick, L., editor, Knowing, Learning and
instruction: Essays in honor of Robert Glaser. Lawrence Erlbaum, Hilldale, NJ..

Darden, L. (1990). Diagnosing and fixing faults in theories. In Shrager, J. and Langley,
P., editors, Computational Models of Scientific Discovery and Theory Formation, pages
319-354. Morgan Kaufmann Publishers, San Mateo, CA.

de Kleer, J. (1990). Using crude probability estimates to guide diagnosis. Artificial Intelli-
gence, 45:381-391.

Fergusson-Hessler, M. and de Jong, T. (1990). Studying physics texts: Difference in study
processes between good and poor solvers. Cognition and Instruction, 7(l):41-54.

Freedman, E. (1992). Scientific inductions: Individual versus group processes and multiple
hypotheses. In Proceedings of the Annual Conference of the Cognitive Science Society,
Cambridge, MA. Erlbaum.

Govindaraj, T. and Su, Y. (1988). A model of fault diagnosis performance of expert marine
engineers. International Journal of Man-Machine Studies, 29:1-20.

Klahr, D. and Dunbar, K. (1988). Dual space search during scientific reasoning. Cognitive
Science, 12:1-48.

Kolodner, J. L. (1993). Case-Based Reasoning. Morgan Kaufman Publishers, San Mateo,
CA.

Kozma, R. (1991). Learning with media. Review of Educational Research, 61(2):179-211.

37

Laird, J., Rosenbloom, P., and Newell, A. (1987). Soar: An architecture for general intelli-
gence. Artificial Intelligence, 33:1-64.

Lajoie, S. and Lesgold, A. (1989). Apprenticeship training in the workplace: Computer-
coached practice environment as a new form of apprenticeship. Machine-Mediated Learn-
ing, 3:7-28.

Lancaster, J. and Kolodner, J. (1988). Varieties of learning from problem solving experi-
ence. In Proceedings of the Tenth Annual Conference of the Cognitive Science Society,
Hillsdale, NJ. Lawrence Erlbaum Associates.

Larkin, J. H. (1988). Display-based problem solving. In Klahr, D. and Kotovsky, K., edi-
tors, Complex Information Processing: Essays in honor of Herbert A. Simon. Lawrence
Erlbaum, Hillsdale, NJ.

Larkin, J. H. and Simon, H. A. (1987). Why a diagram is (sometimes) worth ten thousand
words. Cognitive Science, 11:64-100.

LeFevre, J. and Dixon, P. (1986). Do written instructions need examples? Cognition and
Instruction, 3:1-30.

Lewis, M. and Anderson, J. (1985). Discrimination of operator schemata in problem solving:
Learning from examples. Cognitive Psychology, 17:26-65.

Merrill, D. and Reiser, B. (1994). Scaffolding effective problem solving strategies in inter-
active learning environments. In Proceedings of the Annual Meeting of the Cognitive
Science Society, Hillsdale, NJ. Erlbaum.

Munro, A. (1993). Authoring interactive graphical models for instruction. In Towne, D.,
de Jong, T., and Spada, H., editors, Simulation-based experiential learning, volume 122,
pages 33-45. NATO ASI Series F, Springer Verlag, Heidelberg.

Newell, A. (1990). Unified Theories of Cognition. Harvard University Press, Cambridge,
MA.

Pirolli, P. and Anderson, J. (1985). The role of learning from examples in the acquisition of
recursive programming skills. Canadian Journal of Psychology, 39(2):240-272.

Pirolli, P. and Recker, M. (1994). Learning strategies and transfer in the domain of pro-
gramming. Cognition and Instruction, 12(3):235-275.

Recker, M., Govindaraj, T., and Vasandani, V. (1994). Troubleshooting strategies in complex
domains. In Proceedings of the Fifteenth Annual Conference of the Cognitive Science
Society, pages 739-744. Lawrence Erlbaum, Hilldale, NJ.

38

Recker, M. and Pirolli, P. (1995). Modelling individual differences in students' learning
strategies. Journal of the Learning Sciences, 4(1):1—38.

Recker, M. and Ram, A. (1994). Cognitive media types as indices for hypermedia learn-
ing environments. In Proceedings of the AAAI Workshop on Indexing and Reuse in
Multimedia Systems, Menlo Park. AAAI.

Redmond, M. (1992). Learning by Observing and Understanding Expert Problem solving.
PhD thesis, Georgia Institute of Technology.

Simon, H. A. (1973). The Sciences of the Artificial. MIT Press, Cambridge, MA.

Soloway, E., Guzdial, M., Brade, K., Hohmann, L., Tabak, I., Weingrad, P., and P., B.
(1992). Technological support for the learning and doing of design. In Jones, M. and
Winne, P., editors, Adaptive Learning Environments. NATO ASI Series, Springer Verlag,
Berlin.

Sweller, J. and Cooper, G. (1985). The use of worked examples as a substitute for problem
solving in learning algebra. Cognition and Instruction, 7:1-39.

Towne, D. (1993). Teaching and learning diagnostic skills in a simulation environment. In
Towne, D., de Jong, T., and Spada, H., editors, Simulation-based experiential learning,
volume 122, pages 149-164. NATO ASI Series F, Springer Verlag, Heidelberg.

Towne, D. and Munro, A. (1988). The intelligent maintenance training system. In Psotka,
J., Massey, L., and Mutter, S., editors, Intelligent Tutoring Systems: Lessons Learned,
pages 479-531. Lawrence Erlbaum Associates, Hillsdale, NJ.

Vasandani, V. and Govindaraj, T. (1993). Knowledge structures for a computer-based train-
ing aid for troubleshooting a complex system. In Towne, D., de Jong, T., and Spada,
H., editors, Simulation-based experiential learning, volume 122, pages 17-32. NATO ASI
Series F, Springer Verlag, Heidelberg.

Vasandani, V. and Govindaraj, T. (1994). Knowledge organization in intelligent tutoring
systems for diagnostic problem solving in complex dynamic domains. IEEE Transactions
on Systems, Man, and Cybernetics, SMC-25.

Wenger, E. (1987). Artificial Intelligence and tutoring systems. Morgan Kaufmann Publish-
ers, Los Altos, CA.

White, B. (1993). Thinkertools: Causal models, conceptual change, and science education.
Cognition and Instruction, 10(1).

39

White, B. and Frederiksen, J. (1990). Causal model progression as a foundation for intelligent
tutoring systems. Artificial Intelligence, 42(1):99-157.

40

IV

— if.sr^

E
cu •*» </> X
3! «
U> o

4-J
OI
e «-*
•a 3

a
< s

c
w o e e
Bl ^
B u

■^

E e
a>
o

0) £
AC

o
M
a»
a

u
cu

i a>
a </>

0)
M

"> 2
■«= £
O .O

ic
I« 0) —
3: Ü

o
c

o
c
ID
c
o
c
o
3>

CD

E€
o o
* Ö u

L. o> c
ID (* —
E •= * «
u E -c c
x n < -o

«-< a>
c —>
a> 3
ES
SS
3 c .-;
er — csl ui £ _
.— o —
O L. |

™ • I i? » o ^ fl) V

E 3>M
£ E S

< '
e •<

o> ^^
o E in
-« P o> 3> I- o n w £

■o ■»- a>
•go t. E en
o o>_

^: 3 3> o
5 0) JD O
2 0> T, W

C — C IS
n v c c
B C - «3

2|i«
> > w L.
5 » JD O
© -~ L. *r"
e -c o >
*•- £5
** O 0)
< U CD

ZV

"-/

£fr

C J&f'Si-i

tt

WM :~—•.ry—TTyrr: -— —-"-rm-ivanffl Kl

EC El EC EI

«->
L.
a>
a
x «
a>

c

> <l
H El El

5*
e

E w
o

s
0.

u
3

e

a>

w
a
u

a

e
(A
k.
0)
0.

w
a>

c

e
e

L.
s

E
e u
E
a

e

u
e
a

41 1*

in
0)
O)
o

» o
■Q 1_ p a>
fc * .. o 5 Q. >

•i— *-<
k- C ü a>

1 3
P CT
k 0)
«> L.
X u.

S)

w

«-

o Q.
O

in o
E
a> a>
0)
M c

fc
a> c
**
V) c
3) o
u> c « *»~
£ a>
1- a

K E

E
a>

Q.
(A
0)
o>
O

Q. s
O 3
O O
"" L. a> a>

o
Q.

rw El
c
«j
Q.
X
0)

o
Q.
3)

«> .£
£ JE
a> ei
.** c
E o 5 ü
c
o> _ ID —

a>

V)
♦^

— ■■ «> 3

EH- ^
— 3 »

>B5 5

^ -f./-/

9Tv

r -9IJ

9fr

w
• ■-- -s

01 lo

«^
<-l

L.
a
a
X
a —s

0) r' £
£ i" -w
a « £
a >
< C

on
n

lil
ill

 1

E

-E

e e
u s
w e
w
0)

a»
•»
e
u

E
a>
5
2

e
w
0)

JÖ

a
E e
u
E a
n e u a
s u
e
o>
L
• I

<A 1*

u>
m
O)

_ o

» o
•Q L.
P 0)
k*
.. o 9> Q. >
1- c

■o a>
1 3

P cr b a «o u
X u.

o a
o

<n o
E
a> a>
ai
w c

fc
a> c
♦^
e> c
3) a
in c
a> ■^

c a>
1- A

r^A 0
*l 16 0)

e
<0 j
a>
-' B)
n Q.
c o
o o

M a> _
«i
U V_ «J a •o (0 a.
t-

7 iE
o

0)
n t; ™ *-»
a —> 1 = p_ 3

u a> p

i S 9 " </>
e a. a) a> u> * .c a a> £ H »* u| Z$ S 5

I a I 5 p, => g a.
" JC

3 LU

*■' a>
•_ c
~" o>
e» c
c —
— 3>
*■" u.
» i_

E - B)
X
a

Q) -o Q.

s £ § W| w o X a

"1
Q)

c
e u e

p
r

ri
ve

ti

ll

ON > c » a>
(M o>

l-d
r«

o

rd
-

te
m

 9) •- -c

Si
o
L. ■21 s 11« I a>

o i «" CD j?
Q — 3> «0

! f.-
XI1 a. d 2 S«S

" «. L. 3 QM| c QM ; > a» "o
M] a> *5

el
ec

t
R

ep

B
ut

 3 a> c c
'"Til ^91 3 — a> o
a a> q 3 > CD U

Mi <y u. iH co ► ̂1 • • •

-DJJ

LP

c
a>
m C

0) <B

E ~
m E "» a O 0)

U £
r a> »^

CK i_
■ o

(0 w

S)W
o o 0.
* %->
E o *>

<0
a> c

3) o 3 (/) Q. A

c e

3

0)
M e u

01 10

k.
a>
a!
*l

< si

111
41 16

e
3
e I

_E

c
e

L.
o
w
3 a
E

E

u
e • v. o
s
at

41 10

in
Q>
O) _ «>

E 3
» O

•O L.
p 0)
fe*
-. 0
J> Q. >
1- c ^ a>
1 3 P o- fc « 0 l_

X ü.

0

O

s =

8 =

<" 0)
a> o>
£ o
_ 3

5 *
U a.

"- in
O) o>
C O)

l!
55
§&

■^ c
W ffi
3) «
•» *
0> o'
c 0)

0 Q.
+* O
V) O

E
0) O
Ql
U) C

fc C

in c
3) 0
w c
a "•"
£ a>
t- a

E

in a. o o

"» in
k. —
a> m

■^ a>
3 .e
Q. •<

I S

a> »^
«-< a,

a>

o
Q.

O
3)
C
O

in a>

S £ • 3 as
o in »
L. a> a>

JC!
at)
W)

§1
U)
3

>'

V

? =
5 ?E
in i_ a>
»7;
" » o
c o o.
0 ° in
ai _ a>
> ^ O)
r 5 »
■o in 3

E £ 5s
£ in $

C " tt
ü 2 s»
»£5

a CD •
a
V)

c a> (/) a> •*> a.
S ?k=> CT -* — a) in a t • »
in »^ •—.

"if
™ 8 "° — a> a>

3 in in -a
O a) «. c

£ — •
- in I
t «> E

O O

£ «^ •
«J •» a>

■c >- 5?

«L El

(0

in

in
a>
in
a>

~ c
B%
O Q.
rr 3> in
£■ x: a>
O «rf 4-«
u o o
? o) -a
a> c c
— 0)O
> (9 u

• •

t 2'J-

Final Report
Psychology Group

ARI Contract
December 1994

OVERVIEW

The psychology group, Lawrence W. Barsalou in collaboration with Christopher Hale, Koen
Lamberts, and Brian Ross, concentrated their efforts on two lines of work: mental models of physical
systems, and the role of frames in mental models. The work on mental models addressed the
acquisition of mental models for physical systems and the use of these models in troubleshooting. The
work on frames addressed the nature of frames, empirical evidence for frames in human learning, and a
computational model of frame acquisition.

MENTAL MODELS OF PHYSICAL SYSTEMS

The primary emphasis of our work has been to explore factors that optimize the learning of symptom-
fault rules in troubleshooting. For many kinds of devices, the large majority of faults can be
encapsulated in a relatively small set of symptom-fault rules. Rather than having to use weak search
methods or knowledge-intensive qualitative reasoning to discover faults, troubleshooters can learn
symptom-fault rules for the majority of a system's failures and recognize these failures as they occur
(see Christopher Hale's dissertation, Hale, 1992, for a comprehensive review of troubleshooting). Our
primary hypothesis~to some extent confirmed and to some extent disconfirmed--has been that knowing
explanatory knowledge of a system facilitates the acquisition of symptom-fault rules. The following
three projects have examined this issue.

The Role of Mental Models in Constraining Search during Troubleshooting

Our first project examined whether knowing a mental model for a physical system facilitated the
subsequent acquisition of symptom-fault rules. Surprisingly, benefits of knowing a mental model
where difficult to obtain. In several experiments, we obtained no effect of mental models at all.
Instead, the overwhelming factor that determined how well subjects learned a symptom-fault rule was
simply the number of times it was studied. The more that subjects studied a symptom-fault rule, the
better they learned it. Knowing a mental model-on those occasions when it had a beneficial effect-was
much less important to learning a symptom-fault rule than was frequency of study and use. The relative
importance of study frequency and the relative unimportance of mental models suggests a simple,
inexpensive strategy for training troubleshooters: Don't spend a lot of time and resources teaching
mental models to troubleshooters, if the only type of troubleshooting that they will be performing
involves symptom-fault rules. Instead, concentrate training efforts on repeated training of the rules so
that they become well established in the troubleshooters' memories.

We hasten to add that mental models can be important under circumstances, as we shall see, and that the
training of troubleshooting can therefore benefit, on some occasions, from the study of mental models.
Our advice is simply that the importance of study frequency should not be ignored, given it's clear
importance in learning.

49

Barsalou

One way in which mental models can benefit the application of symptom-fault rules is through
constraining search during troubleshooting. In Barsalou and Hale (1995), we performed a series of
experiments, which demonstrate that mental models can constrain search, such that the acquisition of
symptom-fault rules is improved. To see how this works, imagines that 20 symptom-fault rules could
potentially apply to the repair of a broken device. If all 20 rules must be considered for each broken
device, regardless of the symptoms it presents, the troubleshooter must narrow search from 20 potential
rules to the 1 correct rule. In contrast, imagine that the troubleshooter could immediately eliminate 16 of
the rules as not being relevant, and only consider 4 in trying to converge on the 1 correct rule. In a
signal detection context, where the correct rule is the signal and the incorrect rules are noise, it is much
easier to detect the signal when the noise is 4 irrelevant rules than when it is 20.

In Barsalou and Hale (1995), we demonstrated that being able to constrain search in this manner, not
only facilitates the guessing of rules, when the correct rule was not known, it also speeds the learning of
rules, when rules are known. By developing mathematical models that partition guessing and learning,
we were able to show that constraining search facilitates both guessing and learning.

To see how the experiments demonstrated this conclusion, imagine a physical system has 20
components, organized into 4 subsystems of 5 components each. In the unconstrained search
condition, the symptom and fault always occurred in different subsystems. Thus, given a symptom,
subjects could never predict which subsystem the fault was in. In this condition, subjects had to
consider 19 potential symptom-fault rules, because they couldn't a priori rule out any subsystems. In
contrast, in the constrained search condition, the fault always occurred in the same subsystem as the
fault. Thus, subjects learned quickly that they could rule out possible faults in 3 of the 4 potential
subsystems (i.e., 15 total faults) and concentrate search on the 4 remaining potential faults in the
subsystem containing the symptom. Under these conditions, we observed that learning symptom-fault
rules, not just guessing faults, proceeded significantly faster than when search was unconstrained.

These results demonstrate that helping troubleshooters constrain search can improve their ability to learn
symptom-fault rules. Again, however, we emphasize the importance of study frequency: The
importance of constraining search, although sizable in effect, is smaller than the benefit of increasing the
number of study trials.

We obtained one other important set of results from these experiments. When subjects didn't know a
fault (i.e., they hadn't learned the corresponding symptom-fault rule), they guessed. Mental models
strongly biased subjects' guessing performance, with these biases taking two general forms: direction
and distance. For direction, subjects tended to guess faults that lay behind symptoms in the flow of
operation (although faults that lay ahead of symptoms were possible and occurred frequently). For
distance, subjects tended to guess faults that were near the symptom as opposed to far from it. These
biases were ubiquitous in our experiments and typically quite strong, prior to subjects learning the
symptom-fault rules. Implications for training are that troubleshooters can be expected to have these
biases, and that measures should be taken to anticipate the potential benefits and pitfalls of these biases.

Finally, we note that the learning of symptom-fault rules will not enable troubleshooters to discover new
or particularly difficult faults, which may typically require deeper explanatory knowledge of the system
or weak search methods. Again, these more 'exploratory' types of troubleshooting lie beyond the scope
of symptom-fault rules. Again, the rationale for focusing on symptom-fault rules was our belief that

50

Barsalou

they are used in the very large majority of troubleshooting cases, and are therefore critical to understand
scientifically. See Hale (1992) for further discussion.

The Nature of Human Explanations that Underlie Mental Models

In most of our research on mental models, we focused on performance measures of learning and
troubleshooting, such as percent correct and reaction time. In this project, we focused on the
explanations that people construct while learning mental models and using them in troubleshooting.
This work is currently under review at the Journal of the Learning Sciences (Hale & Barsalou, 1994).

To explore the content and construction of human explanations, we performed detailed protocol analyses
of the explanations that subjects produced while learning about a fictional system (the system learning
phase) and later while troubleshooting it (the troubleshooting phase). During the system learning phase,
subjects received a series of diagrams for a system and explained how it worked. During the
troubleshooting phase, in the absence of the diagrams, subjects explained relations between problematic
symptoms and their faults. To examine the evolution of explanations with learning, subjects explained
the same system diagrams and the same symptom-fault relations multiple times.

The explanations that subjects constructed varied considerably between system learning and
troubleshooting, indicating that different goals produced different explanations. During system
learning, subjects focused almost exclusively on functional explanations, exhibiting no trend toward
deeper mechanistic explanations over time. To construct these functional understandings, subjects
primarily instantiated existing knowledge in memory, specializing it to explain the purposes of
individual components. During troubleshooting, subjects still focused on function, but included a much
wider variety of functional information in their explanations, as well as higher proportions of
topographical and mechanistic information. Rather than focusing on individual components, subjects
focused on qualitative relations between components, as they attempted to understand forward causal
relationships from faults to symptoms. Also unlike system learning, explanations during
troubleshooting evolved significantly over time, shifting from qualitative reasoning to reminding.

The topography and coherence of the diagrams studied in system learning affected subjects'
explanations substantially: During system learning, explanations were more efficient and mechanistic
when topography and coherence were present than when they were absent. During troubleshooting,
these factors led to faster understanding of symptom-fault relations, as well as to higher rates of
remindings, perhaps through improved indexing.

Our findings raise a variety of issues for further study. Perhaps most significantly, it is not clear how
the instantiation process works during system learning. What is the nature of the existing knowledge
that people bring to bear on instantiation? How does information in the current situation specify what
relevant background knowledge in memory to utilize? How is relevant background knowledge
configured and transformed to construct specific explanations? Does this process resemble the proof of
explanation-based learning, or the schema-fitting of explanation patterns?

Second, what is the nature of the distributed understanding process that occurs during system learning?
Although people did not talk much about relational information while understanding a system, they
nevertheless appeared to use it extensively. In trying to explain the purposes of individual components,
people appeared to rely heavily on their understandings of adjoining components. What information

51

Barsalou

about adjoining components is critical to this process? How is information from adjoining components
integrated with information about the focal component? What explanatory criteria are people trying to
satisfy as they construct these distributed explanations?

Third, our findings raise additional issues that concern troubleshooting: On receiving symptom
information, to what extent do troubleshooters rely on topographical relations, functional similarity, and
so forth to select possible faults? Once people have identified candidate faults, what explanatory criteria
do they use to evaluate the candidates and select one? What specific forms do functional and
mechanistic reasoning take in this process, and what roles do they play? How do various types of
knowledge acquired in system learning facilitate search and decision processes in troubleshooting?

Fourth, our data point to some interesting issues concerning the role of remindings in troubleshooting.
What sorts of topographical indexes do people establish initially, and how do these indexes operate later
during search? Also, how do good explanations enhance the use of topography in remindings? How
does the quality of knowledge established during system learning affect the quality of remindings later
during troubleshooting?

In summary, this project provides a rich source of preliminary information on human explanations about
physical systems. However, it is important to realize that this project constitutes only one of many
possible situations in which people construct explanations. Although our findings probably capture
important general properties of explanations, it is obviously essential to explore explanations in other
situations. Doing so will establish general properties with more certainty, as well as identify conditions
that produce departures from them.

The Role of Explanations in Learning Mental Models

Three general issues were of interest in this project, which became Christopher Hale's dissertation
(Hale, 1992): First, do explanations provided to people while they are learning a system's structure
facilitate the later learning of symptom-fault rules? Second, do explanations provided to people while
they are learning symptom-fault rules (after they have learned the system's structure) facilitate learning?
Third, are functional explanations maximally effective in facilitating learning, or does added causal
information improve learning further?

In initial experiments, we observed little if any beneficial effect of explanations at any point in learning
(in comparison to control groups who received no explanations). Consequently, we stopped
performing these experiments and tried to understand why the explanations weren't working. To
understand the hypothesis that we eventually developed, consider a few details of how these
experiments work. During the initial learning of a system, subjects study diagrams of the system's
structure, with each diagram representing a set of physical components connected by their input-output
relations. For example, one of the diagrams for a satellite refueler might represent several chemical
tanks, which are connected to a mixer that blends the chemicals to form fuel. In this diagram, subjects
would learn that chemicals flow from the chemical tanks to the mixer, where they are mixed. Later,
during symptom-fault learning, subjects might learn that when the mixer malfunctions, it is typically
because a chemical tank is broken. Consequently, the symptom is a malfunctioning mixer, and the fault
is a broken chemical tank. In the experiments, subjects receive "mixer malfunctioning" as the symptom,
and "chemical tanks broken" as the fault. The way to think about this kind of troubleshooting is as a
real world situation where the troubleshooter is dealing with a modular system, for which various

52

Barsalou

monitoring and diagnosis systems isolate malfunctioning and broken components. For example, a
monitoring system might initially warn the operator that the mixer is malfunctioning. The operator
might then run various diagnosis procedures, which specify that a chemical tank is broken, causing the
mixer to malfunction. At that point, a repair person might swap out the malfunctioning tank with a
replacement

Note that in the above malfunction and diagnosis, no information is provided about the behavior of the
malfunction (i.e., how the mixer is malfunctioning), or about what is wrong with the chemical tanks.
Instead, the operator simply receives information that the mixer is malfunctioning, and that a chemical
tank is broken. Our hypothesis about why explanations weren't helping subjects learn symptom-fault
rules was as follows: Perhaps subjects couldn't access the explanations from the symptoms, because
the symptoms were too "barren," not containing any behavioral information that would be specific
enough to retrieve the explanations. For example, imagine that the symptom is "malfunctioning mixer,"
and that the explanation for why the a broken chemical tank caused this malfunction is that "the mixer is
malfunctioning because, a chemical tank is failing to send a necessary chemical, thereby causing the
mixer to produce incorrect fuel mixture." Because the symptom ("malfunctioning mixer") fails to
specify its behavioral problem ("producing incorrect fuel mixture"), the learner has difficulty accessing
the explanation that contains this information. In contrast, when the symptom is elaborated as "mixer
that's producing an incorrect fuel mixture," the match is higher, and the explanation is more likely to be
retrieved, thereby providing access to the probable fault. To summarize, perhaps subjects only take
advantage of explanations when the cueing information in the symptom activates the explanations stored
with the fault in memory. In contrast, perhaps we weren't seeing explanation effects, either at learning
or test, because, the symptoms weren't specific enough to retrieve the explanations.

To test this, we ran a few pilot subjects for whom we provided behavioral information about the
malfunctioning component in the symptom, and we finally found explanation effects. As a result, we
redesigned our original experiments to incorporate this critical variable, namely, whether or not the
symptom is elaborated behaviorally or not. In these experiments, this factor is crossed fully with two
additional factors: (1) whether subjects receive explanations at learning, and (2) whether subjects
receive explanations at test Note that explanations at learning describe how the system works as
subjects study and memorize the diagrams for the system, whereas explanations at test describe how the
symptom and fault are related as subjects receive feedback about the fault they generated for the
symptom.

The implications of this finding appear important for designing troubleshooting applications in the real
world. Essentially, it suggests that whatever symptom information subjects receive should be specific
and should map closely onto the explanation that links it to the associated fault. For example, many
modular systems nowadays simply instruct the operator that a particular component is malfunctioning,
without specifying the malfunctioning behavior. If the operator knows an explanation linking the
symptom to the fault, it is likely that this barren error message will fail to activate the explanation and
thereby fail to take advantage of the explanation's ability to generate the fault. In contrast, if the error
message states the behavioral properties of the symptom in a way that maps closely onto the
explanation, the explanation is likely to become active and bring the fault to the operator's attention.

Thus, the primary finding from these experiments is that the largest explanation effect occurs for
elaborated symptoms: When symptoms are barren, the presence or absence of explanations at either
learning or test has little effect. Explanations primarily appear to facilitate learning when symptoms are

53

Barsalou

elaborated. Moreover, there is a main effect of elaborated versus barren symptoms: Even when
subjects receive no explanations, elaborated symptoms seem to promote better learning than barren
symptoms. However, the best performance appears to occur when subjects receive both explanations
and elaborated symptoms, suggesting that an explanatory understanding of the system, coupled with
elaborated symptoms capable of accessing relevant parts of this explanatory structure, produce optimal
troubleshooting performance.

Hale also ran one further experiment that assessed whether causal explanations produce any better
learning than simple functional explanations. For example, a functional explanation might be, "the
mixer is malfunctioning because, a chemical tank is failing to provide a necessary chemical, thereby
causing the mixer to produce incorrect fuel mixture." In contrast, a causal explanation might be, "the
chemical tank cracked and drained, such that its chemical did not flow to the mixer, thereby causing the
mixer to produce incorrect fuel mixture." The latter explanation is causal, because it describes a physical
mechanism (the crack) that caused the malfunction, rather than simply describing the functional problem
as in the former explanation (i.e., a necessary chemical failed to arrive at the mixer). Of interest is
whether the additional causal information facilitates learning, even though it doesn't increase the match
between an elaborated symptom and the explanation. Our hypothesis was that the causal information
strengthens the explanation, thereby increasing the chances of generating the fault, once the symptom
accesses the explanation. The results weakly supported the causal hypothesis. However, it is critical to
explore the role of causal information further before drawing strong conclusions. We doubt if the role
of causal knowledge, if indeed important, plays as substantial a role in learning as does presentation
frequency, constrained search, symptom elaboration, and the presence of explanations during system
learning and troubleshooting.

Finally, it is essential to note that Chris Hale continues to carry out this line of work at Armstrong
Laboratories (Brooks AFB). One of the primary accomplishments of this funding was the training and
development of Hale as a research scientist. Not only did Hale contribute to much of the research in this
report, he continues to contribute significantly to this area, and he will certainly contribute for many
more years to come. For the past two years, Hale has been continuing the research in his dissertation,
along with other related projects on the acquisition and troubleshooting of physical systems. One of
Hale's primary projects has been to examine the long-term effects of explanations on the acquisition of
symptom-fault rules. In all of our previous work, subjects were tested immediately on the application of
these rules, thereby not enabling an assessment of what happens after longer delays. Of particular
interest is whether explanations have larger effects than those observed thus far when there are long
delays between rule acquisition and rule application, as often occurs in the real world. Hale's
preliminary findings indeed suggest that explanations become increasingly important with delay.
Because most real-world troubleshooting involves delay, the outcome of Hale's current studies has
important implications in applied settings.

Once Hale has completed these studies, he plans to write a long report or monograph containing both
these studies and those from his dissertation.

FRAMES IN MENTAL MODELS

In performing our research on mental models, it became clear that mental models are a type of frame or
schema. For this reason, we undertook a theoretical analysis to assess the nature of frames. Without
such an analysis, we didn't believe that we could provide a clear and compelling account of the mental

54

Barsalou

models that underlie the acquisition and troubleshooting of physical systems. Thus, we performed three
projects in this area: one that attempted to establish the nature of frames, a second that attempted to
acquire preliminary evidence for our particular formulation of frames, and a third that attempted to
implement a simulation of this theory.

The Nature of Frames

Several initial papers examined the structure of frames: Barsalou (1991), Barsalou (1992), and
Barsalou and Hale (1993). Barsalou's (1992) text on cognitive psychology also develops the construct
of frame as central theoretical entity and illustrates its role throughout the cognitive system. These
accounts contrast frames with feature lists, the latter being a derivative of prepositional logic, and the
former a derivative of predicate calculus. Frames are much more powerful expressively than feature
lists, representing several types of structure impossible to represent in feature lists. Most importantly, it
is just this type of structure that is central to mental models.

In these papers, we established four critical relations that constitute frame structure. Our strong
conjecture is that these four relations are necessary and jointly sufficient for the existence of any frame.
These relations are: (1) attribute-value relations (i.e., slots bound to instantiations), (2) structural
invariants (i.e., predicates that link attributes conceptually), (3) constraints (i.e., correlations between
the values of two or more attributes, and (4) recursion (i.e., the potential decomposition of any attribute,
value, structural invariant, or constraint into further frames). We know of no aspect of conceptual
structure that cannot be accounted for by these four relations. Most importantly, it is exactly this sort of
structure that is central to mental models of physical systems. Models of physical systems have
attributes that take values (e.g., the current states of components), structural invariants (e.g., the
connectivity between components), constraints (e.g., the dependence of one component's state on
another component's state), and recursion (e.g., the hierarchical decomposition of a component).

In two later papers, we explored the thesis that frames have a perceptual basis (Barsalou, 1993;
Barsalou, Yeh, Olseth, Luka, Mix, & Wu, 1993). These papers demonstrate how the four basic frame
relations just described exist naturally and intrinsically in perceptual representations. Of future interest is
exploring the roles that such perceptual representations play in the acquisition and troubleshooting of
physical systems

Empirical Evidence for Frames

Two preliminary projects attempted to obtain evidence for our account of frames. The first, performed
in collaboration with Brian Ross and Koen Lamberts, examined the acquisition of frames for municipal
water systems. Subjects studied a total of 12 water plants. One group of subjects-the frame condition-
-was asked to learn about water systems in general, whereas the other group--the exemplar condition-
was asked to learn the individual water systems. The 12 water systems had a variety of attributes and
structural invariants in common, while varying on the values of the attributes. Of interest was the
degree to which subjects learned the frame structure, especially the attributes and their distributions of
values. We predicted that the frame condition would learn the frame for the water systems, whereas the
exemplar group would not. Results from the one experiment performed so far support this prediction.
Model subjects were able to produce frame-structured information much more extensively than exemplar
subjects. Interestingly, model subjects also appeared better able to remember information about

55

Barsafou

exemplars, suggesting that acquiring the frame for water systems in general facilitated the learning of
individual water systems. Further studies in this project are currently being planned.

The second project similarly sought evidence for frames. This project, performed in collaboration with
Janellen Huttenlocher and Koen Lamberts, obtained compelling evidence that people integrate
information across multiple presentations of the same individual into a frame for that individual. In
these experiments, we demonstrated that people make an important decision, on encountering new
information in the environment, about whether to create a new frame for storing the information, or to
add the information to an existing frame. Essentially, this sort of processing conforms to the one-entity
one-frame-principle (Barsalou et al., 1993). According to this principle, information about an individual
extracted from multiple processing events is integrated into a single frame, assuming that the
individual's identity is established correctly on each occasion. On encountering a familiar individual, its
frame is retrieved to guide processing in two ways: First, the frame provides top-down guidance in
interpreting the individual, utilizing information from previous experiences to understand and predict the
individual's current behavior. Second, the frame absorbs information about the individual from the
current processing episode, adding new information to the frame and strengthening repeated
information, perhaps reinterpreting it in the process. The result is an integrated memory structure for the
individual that contains both generic and episodic information. A paper reporting this work is currently
under review (Barsalou, Huttenlocher, & Lamberts, 1994).

Thus, our preliminary attempts to obtain evidence for frames have been highly successful. We plan to
continue gathering empirical evidence for frames, especially the role of frames in structuring the mental
models that underlie physical systems.

A Computational Model of Frames

During the funding period, we began building a general computational system-Image Frame Nets
(IFN)-that reflects three themes: (1) The representation language should be inherently perceptual, not
propositional. (2) Predicates, argument binding, and recursion should structure the system, enabling
productive, symbolic computation. (3) The processing environment should be inherently statistical,
much like a connectionist system, exhibiting generalization, pattern completion, and adaptive learning.

The JJFN representation language is grounded in a general perceptual syntax that can apply to any
modality of experience, including the five sensory modalities, proprioception, and introspection. Units
in the system represent 'regions' of an experiential image that are attended to by selective attention.
Connections between units represent attentional shifts from one region to another. Various relations
between images, represented implicitly, underlie argument binding, predicates, and recursion (Barsalou,
1992). For example, an argument is a region of an image that becomes specialized with other images
(e.g., the face on the schematic image for person is an argument, because images of many particular
faces can specialize it). Similarly, recursion results from specializing the region of a region (e.g.,
specializing eye in face for person). Thus, specific patterns of attentional shifts between images and
their regions implicitly define a productive syntax that can produce infinite symbolic structures from
finite elements.

Based on its learning history, the IFN system adapts itself to its informational environment. In some
ways, learning proceeds as in standard connectionism. For example, regions and attentional shifts
develop strengths that reflect processing frequency. To the extent that some regions of an experiential

56

Barsaiou

image are processed more than others, the units that represent them become more responsive to input.
Similarly, to the extent that some attentional shifts between regions occur more than others, the
connections that represent them convey activation more rapidly. In other ways, however, the IFN
system departs significantly from standard connectionism. For example, the system constantly grows
new units as new images and regions are processed. Similarly, the system constantly grows new
connections as new attentional shifts are performed. Unlike the standard connectionist system, which
has a fixed set of units and a homogenous, fixed set of connections, our architecture is not 'closed'
structurally. Thus, our system is fairly 'localist' in nature, although an entity's representation is always
distributed over many units. Our system further differs from standard connectionism in how it controls
activation. Rather than controlling activation through negative connections, the IFN system controls
activation through negative baselines toward which units constantly decay. Thus, most connections are
positive, reflecting a Hebbian sort of learning. Negative connections do arise when strategic attention
deliberately attempts to suppress a unit, but this is far from the standard practice in which roughly half
of a system's connections have negative weights. Finally, learning is much more local than in standard
connectionism. Rather than distributing error across all connections, the EFN system only adapts those
units and connections attended to explicitly, thereby avoiding catastrophic interference.

Initially, the IFN system is being developed as a general computational architecture. It will exhibit a
broadly applicable form, as well as a straightforward, user-friendly interface that will provide
considerable ease and flexibility to non-programmers. Currently, the representation language has been
completely implemented, together with a classic Macintosh interface that allows users to construct a very
large space of possible networks. Also completed are the mathematics that underlie activation and
learning. Two final components of the system remain to be written: (1) The user interface for defining
the exemplars that train the system during learning. (2) The tracking system for capturing aspects of the
system's performance for later study.

Once finished, the IFN system could be used to represent and examine static nets, similar to the
interactive activation nets in the word recognition literature. Alternatively, the EFN system could be used
to build adaptive systems that learn during categorization and memory experiments. Once the EFN
system reaches this stage of development, the next stage will be to build mechanisms that underlie
problem solving and reasoning, so that we can model the types of results on system learning and
troubleshooting reported earlier.

REFERENCES

All of the works below were supported by ARI contract MDA 903-90-K-0012 and cite support from
this funding source.

Barsaiou, L.W. (1991). Deriving categories to achieve goals. In G.H. Bower (Ed.), The psychology of
learning and motivation: Advances in research and theory (Vol. 27, pp. 1-64). San Diego, CA:
Academic Press.

Barsaiou, L.W. (1992). Frames, concepts, and conceptual fields. In E. Kittay & A. Lehrer (Eds.),
Frames, fields, and contrasts: New essays in semantic and lexical organization (21-74). Hillsdale,
NJ: Lawrence Erlbaum Associates.

57

Barsalou

Barsalou, L.W. (1992). Cognitive psychology: An overview for cognitive scientists. Hillsdale, NJ:
Lawrence Erlbaum Associates.

Barsalou, L.W. (1993). Structure, flexibility, and linguistic vagary in concepts: Manifestations of a
compositional system of perceptual symbols. In A.C. Collins, S.E. Gathercole, & M.A. Conway
(Eds.), Theories of memory. Hillsdale, NJ: Lawrence Erlbaum Associates.

Barsalou, L.W., & Hale, C.R. (1992). Components of conceptual representation: From feature lists to
recursive frames. In I. Van Mechelen, J. Hampton, R. Michalski, & P. Theuns (Eds.), Categories
and concepts: Theoretical views and inductive data analysis. San Diego, CA: Academic Press.

Barsalou, L.W., & Hale, C.R. (1995). The role of mental models in guiding search during symptom-
fault learning. Manuscript in preparation for submission to a journal.

Barsalou, L.W., Huttenlocher, J., & Lamberts, K. (1994). Processing individuals during
categorization. Under review, Cognitive Psychology.

Barsalou, L.W., Yeh, W., Luka, B.J., Olseth, K.L., Mix, K.S., & Wu, L. (1993). Concepts and
meaning. In In K. Beals, G. Cooke, D. Kathman, K.E. McCullough, S. Kita, & D. Testen (Eds.),
Chicago Linguistics Society 29: Papers from the parasession on conceptual representations (pp. 23-
61). University of Chicago: Chicago Linguistics Society.

Hale, C.R. (1992). Effects of background knowledge on associative earning in causal domains.
Doctoral dissertation, Georgia Institute of Technology. Manuscript in preparation for submission to
a journal.

Hale, C.R., & Barsalou, L.W. (1994). Explanation content and construction during system learning
and troubleshooting. Under review, Journal of the Learning Sciences.

58

